Title: | TOmicsVis An All-in-One Transcriptomic Analysis and Visualization R Package with shinyapp Interface |
---|---|
Description: | Transcriptome visualization from sample trait statistics to gene expression analysis. Six categories include "Samples Statistics", "Traits Analysis", "Differential Expression Analysis", "Advanced Analysis", "GO and KEGG Enrichment", "Tables Operations", with complete sample data. |
Authors: | Benben Miao [aut, cre] , Wei Dong [aut] |
Maintainer: | Benben Miao <[email protected]> |
License: | MIT + file LICENSE |
Version: | 2.1.1 |
Built: | 2024-11-10 04:18:40 UTC |
Source: | https://github.com/benben-miao/tomicsvis |
Box plot support two levels and multiple groups with P value.
box_plot( data, test_method = "t.test", test_label = "p.format", notch = TRUE, group_level = "Three_Column", add_element = "jitter", my_shape = "fill_circle", sci_fill_color = "Sci_AAAS", sci_fill_alpha = 0.5, sci_color_alpha = 1, legend_pos = "right", legend_dir = "vertical", ggTheme = "theme_light" )
box_plot( data, test_method = "t.test", test_label = "p.format", notch = TRUE, group_level = "Three_Column", add_element = "jitter", my_shape = "fill_circle", sci_fill_color = "Sci_AAAS", sci_fill_alpha = 0.5, sci_color_alpha = 1, legend_pos = "right", legend_dir = "vertical", ggTheme = "theme_light" )
data |
Dataframe: Length, Width, Weight, and Sex traits dataframe (1st-col: Value, 2nd-col: Traits, 3rd-col: Sex). |
test_method |
Character: test methods of P value. Default: "t.test", options: "wilcox.test", "t.test", "anova", "kruskal.test". |
test_label |
Character: test label of P value. Default: "p.format", options: "p.signif", "p.format". c(0, 0.0001, 0.001, 0.01, 0.05, 1). |
notch |
Logical: Box notch or none. Default: TRUE, options: TRUE, FALSE. |
group_level |
Character: group levels. Default: "Three_Column", options: "Two_Column", "Three_Column". |
add_element |
Character: add new plot. Default: "jitter", options: "none", "dotplot", "jitter", "boxplot", "point", "mean", "mean_se", "mean_sd", "mean_ci", "mean_range", "median", "median_iqr", "median_hilow", "median_q1q3", "median_mad", "median_range". |
my_shape |
Character: box scatter shape. Default: "fill_circle", options: "border_square", "border_circle", "border_triangle", "plus", "times", "border_diamond", "border_triangle_down", "square_times", "plus_times", "diamond_plus", "circle_plus", "di_triangle", "square_plus", "circle_times","square_triangle", "fill_square", "fill_circle", "fill_triangle", "fill_diamond", "large_circle", "small_circle", "fill_border_circle", "fill_border_square", "fill_border_diamond", "fill_border_triangle". |
sci_fill_color |
Character: ggsci color pallet. Default: "Sci_AAAS", options: "Sci_AAAS", "Sci_NPG", "Sci_Simpsons", "Sci_JAMA", "Sci_GSEA", "Sci_Lancet", "Sci_Futurama", "Sci_JCO", "Sci_NEJM", "Sci_IGV", "Sci_UCSC", "Sci_D3", "Sci_Material". |
sci_fill_alpha |
Numeric: ggsci fill color alpha. Default: 0.50, min: 0.00, max: 1.00. |
sci_color_alpha |
Numeric: ggsci border color alpha. Default: 1.00, min: 0.00, max: 1.00. |
legend_pos |
Character: legend position. Default: "right", options: "none", "left", "right", "bottom", "top". |
legend_dir |
Character: legend direction. Default: "vertical", options: "horizontal", "vertical". |
ggTheme |
Character: ggplot2 themes. Default: "theme_light", options: "theme_default", "theme_bw", "theme_gray", "theme_light", "theme_linedraw", "theme_dark", "theme_minimal", "theme_classic", "theme_void" |
Plot: box plot support two levels and multiple groups with P value.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(traits_sex) head(traits_sex) # 3. Default parameters box_plot(traits_sex) # 4. Set test_label = "p.signif", box_plot(traits_sex, test_label = "p.signif") # 5. Set notch = FALSE box_plot(traits_sex, notch = FALSE) # 6. Set group_level = "Two_Column" box_plot(traits_sex, group_level = "Two_Column") # 7. Set add_element = "point" box_plot(traits_sex, add_element = "point")
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(traits_sex) head(traits_sex) # 3. Default parameters box_plot(traits_sex) # 4. Set test_label = "p.signif", box_plot(traits_sex, test_label = "p.signif") # 5. Set notch = FALSE box_plot(traits_sex, notch = FALSE) # 6. Set group_level = "Two_Column" box_plot(traits_sex, group_level = "Two_Column") # 7. Set add_element = "point" box_plot(traits_sex, add_element = "point")
Chord plot is used to visualize complex relationships between samples and genes, as well as between pathways and genes.
chord_plot( data, multi_colors = "VividColors", color_seed = 10, color_alpha = 0.3, link_visible = TRUE, link_dir = -1, link_type = "diffHeight", sector_scale = "Origin", width_circle = 3, dist_name = 3, label_dir = "Vertical", dist_label = 0.3, label_scale = 0.8 )
chord_plot( data, multi_colors = "VividColors", color_seed = 10, color_alpha = 0.3, link_visible = TRUE, link_dir = -1, link_type = "diffHeight", sector_scale = "Origin", width_circle = 3, dist_name = 3, label_dir = "Vertical", dist_label = 0.3, label_scale = 0.8 )
data |
Dataframe: Shared DEGs of all paired comparisons in all samples expression dataframe of RNA-Seq. (1st-col: Genes, 2nd-col~: Samples). |
multi_colors |
Character: color palette. Default: "VividColors", options: "VividColors", "RainbowColors". |
color_seed |
Numeric: rand seed for VividColors. Default: 10. |
color_alpha |
Numeric: color alpha. Default: 0.50, min: 0.00, max: 1.00. |
link_visible |
Logical: links visible. Default: TRUE, options: TRUE, FALSE. |
link_dir |
Numeric: links direction, use with link_type. Default: -1, options: -1, 0, 1, 2. |
link_type |
Character: links type, use with link_dir. Default: "diffHeight", options: "diffHeight", "arrows". |
sector_scale |
Character: sector scale method. Default: "Origin", options: "Origin", "Scale". |
width_circle |
Numeric: outside circle width. Default: 3.0, min: 0.0, max: 10.0. |
dist_name |
Numeric: the distance of name and circle. Default: 3.0, min: 0.0, max: 10.0. |
label_dir |
Character: label director. Default: "Vertical", options: "Horizontal", "Vertical". |
dist_label |
Numeric: the distance of label and circle. Default: 0.3, min: 0.0. |
label_scale |
Numeric: labels font size sclae. Default: 0.8, min: 0, max: NULL. |
Plot: chord plot is used to visualize complex relationships between samples and genes, as well as between pathways and genes.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_expression2) head(gene_expression2) # 3. Default parameters chord_plot(gene_expression2[1:20,])
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_expression2) head(gene_expression2) # 3. Default parameters chord_plot(gene_expression2[1:20,])
Circos heatmap plot for visualizing gene expressing in multiple samples.
circos_heatmap( data, low_color = "#0000ff", mid_color = "#ffffff", high_color = "#ff0000", gap_size = 25, cluster_run = TRUE, cluster_method = "complete", distance_method = "euclidean", dend_show = "inside", dend_height = 0.2, track_height = 0.3, rowname_show = "outside", rowname_size = 0.8 )
circos_heatmap( data, low_color = "#0000ff", mid_color = "#ffffff", high_color = "#ff0000", gap_size = 25, cluster_run = TRUE, cluster_method = "complete", distance_method = "euclidean", dend_show = "inside", dend_height = 0.2, track_height = 0.3, rowname_show = "outside", rowname_size = 0.8 )
data |
Dataframe: Shared degs of all paired comparisons in all samples expression dataframe of RNA-Seq. (1st-col: Genes, 2nd-col~: Samples). |
low_color |
Character: min value color (color name or hex value). Default: "#0000ff". |
mid_color |
Character: middle value color (color name or hex value). Default: "#ffffff". |
high_color |
Character: high value color (color name or hex value). Default: "#ff0000". |
gap_size |
Numeric: heatmap gap size. Default: 25, min: 0. |
cluster_run |
Logical: running cluster algorithm. Default: TRUE, options: TRUE, FALSE. |
cluster_method |
Character: cluster methods. Default: "complete", options: "ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median", "centroid". |
distance_method |
Character: distance methods. Default: "euclidean", options: "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski". |
dend_show |
Character: control dendgram display and position. Default: "inside", options: "none", "outside", "inside". |
dend_height |
Numeric: dendgram height. Default: 0.20, min: 0.00, max: 0.50. |
track_height |
Numeric: heatmap track height. Default: 0.30, min: 0.00, max: 0.50. |
rowname_show |
Character: control rownames display and position. Hind first rowname by running rownames(data). Default: "outside", options: "none", "outside", "inside". |
rowname_size |
Numeric: rowname font size. Default: 0.80, min: 0.10, max: 10.00. |
Plot: circos heatmap plot for visualizing gene expressing in multiple samples.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_expression2) head(gene_expression2) # 3. Default parameters circos_heatmap(gene_expression2[1:50,])
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_expression2) head(gene_expression2) # 3. Default parameters circos_heatmap(gene_expression2[1:50,])
Correlation Heatmap for samples/groups based on Pearson algorithm.
corr_heatmap( data, corr_method = "pearson", cell_shape = "square", fill_type = "full", lable_size = 3, axis_angle = 45, axis_size = 12, lable_digits = 3, color_low = "blue", color_mid = "white", color_high = "red", outline_color = "white", ggTheme = "theme_light" )
corr_heatmap( data, corr_method = "pearson", cell_shape = "square", fill_type = "full", lable_size = 3, axis_angle = 45, axis_size = 12, lable_digits = 3, color_low = "blue", color_mid = "white", color_high = "red", outline_color = "white", ggTheme = "theme_light" )
data |
Dataframe: All genes in all samples expression dataframe of RNA-Seq (1st-col: Genes, 2nd-col~: Samples). |
corr_method |
Character: correlation method. Default: "pearson", options: "pearson", "spearman", "kendall". |
cell_shape |
Character: heatmap cell shape. Default: "square", options: "circle", "square". |
fill_type |
Character: heatmap fill type. Default: "full", options: "upper", "low", "full". |
lable_size |
Numeric: heatmap label size. Default: 3, min: 0. |
axis_angle |
Numeric: axis rotate angle. Default: 45, min: 0, max: 360. |
axis_size |
Numberic: axis font size. Default: 12, min: 0. |
lable_digits |
Numeric: heatmap label digits. Default: 3, min: 0, max: 3. |
color_low |
Character: low value color name or hex value. Default: "blue". |
color_mid |
Character: middle value color name or hex value. Default: "white". |
color_high |
Character: high value color name or hex value. Default: "red". |
outline_color |
Character: outline color name or hex value. Default: "white". |
ggTheme |
Character: ggplot2 theme. Default: "theme_light", options: "theme_default", "theme_bw", "theme_gray", "theme_light", "theme_linedraw", "theme_dark", "theme_minimal", "theme_classic", "theme_void". |
Plot: heatmap plot filled with Pearson correlation values and P values.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset gene_exp data(gene_expression) head(gene_expression) # 3. Default parameters corr_heatmap(gene_expression) # 4. Set color_low = "#008800" corr_heatmap(gene_expression, color_low = "#008800") # 5. Set cell_shape = "circle" corr_heatmap(gene_expression, cell_shape = "circle")
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset gene_exp data(gene_expression) head(gene_expression) # 3. Default parameters corr_heatmap(gene_expression) # 4. Set color_low = "#008800" corr_heatmap(gene_expression, color_low = "#008800") # 5. Set cell_shape = "circle" corr_heatmap(gene_expression, cell_shape = "circle")
Paired comparisons differentially expressed genes (degs) among groups.
data(degs_lists)
data(degs_lists)
Dataframe: Paired comparisons differentially expressed genes (degs) among groups (1st-col~: degs of paired comparisons).
benben-miao
https://github.com/BioSciTools/BioSciToolsDatasets/tree/main/VennPlot/
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example data data(degs_lists) # 3. View example data degs_lists
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example data data(degs_lists) # 3. View example data degs_lists
All DEGs of paired comparison CT-vs-LT12 stats dataframe.
data(degs_stats)
data(degs_stats)
Dataframe: All DEGs of paired comparison CT-vs-LT12 stats dataframe (1st-col: Genes, 2nd-col: log2FoldChange, 3rd-col: Pvalue, 4th-col: FDR).
benben-miao
https://github.com/BioSciTools/BioSciToolsDatasets/tree/main/VolcanoPlot/
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example data data(degs_stats) # 3. View example data degs_stats
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example data data(degs_stats) # 3. View example data degs_stats
All DEGs of paired comparison CT-vs-LT12 stats2 dataframe.
data(degs_stats2)
data(degs_stats2)
Dataframe: All DEGs of paired comparison CT-vs-LT12 stats2 dataframe (1st-col: Gene, 2nd-col: baseMean, 3rd-col: Log2FoldChange, 4th-col: FDR).
benben-miao
https://github.com/BioSciTools/BioSciToolsDatasets/tree/main/MversusA/
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example data data(degs_stats2) # 3. View example data degs_stats2
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example data data(degs_stats2) # 3. View example data degs_stats2
Dendrograms for multiple samples/groups clustering.
dendro_plot( data, dist_method = "euclidean", hc_method = "ward.D2", tree_type = "rectangle", k_num = 5, palette = "npg", color_labels_by_k = TRUE, horiz = FALSE, label_size = 1, line_width = 1, rect = TRUE, rect_fill = TRUE, xlab = "Samples", ylab = "Height", ggTheme = "theme_light" )
dendro_plot( data, dist_method = "euclidean", hc_method = "ward.D2", tree_type = "rectangle", k_num = 5, palette = "npg", color_labels_by_k = TRUE, horiz = FALSE, label_size = 1, line_width = 1, rect = TRUE, rect_fill = TRUE, xlab = "Samples", ylab = "Height", ggTheme = "theme_light" )
data |
Dataframe: All genes in all samples expression dataframe of RNA-Seq (1st-col: Genes, 2nd-col~: Samples). |
dist_method |
Character: distance measure method. Default: "euclidean", options: "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski". |
hc_method |
Character: hierarchical clustering method. Default: "ward.D2", options: "ward.D", "ward.D2", "single", "complete","average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC). |
tree_type |
Character: plot tree type. Default: "rectangle", options: "rectangle", "circular", "phylogenic". |
k_num |
Numeric: the number of groups for cutting the tree. Default: 3. |
palette |
Character: color palette used for the group. Default: "npg", options: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty". |
color_labels_by_k |
Logical: labels colored by group. Default: TRUE, options: TRUE or FALSE. |
horiz |
Logical: horizontal dendrogram. Default: FALSE, options: TRUE or FALSE. |
label_size |
Numeric: tree label size. Default: 0.8, min: 0. |
line_width |
Numeric: branches and rectangle line width. Default: 0.7, min: 0. |
rect |
Logical: add a rectangle around groups. Default: TRUE, options: TRUE or FALSE. |
rect_fill |
Logical: fill the rectangle. Default: TRUE, options: TRUE or FALSE. |
xlab |
Character: title of the xlab. Default: "". |
ylab |
Character: title of the ylab. Default: "Height". |
ggTheme |
Character: ggplot2 theme. Default: "theme_light", options: "theme_default", "theme_bw", "theme_gray", "theme_light", "theme_linedraw", "theme_dark", "theme_minimal", "theme_classic", "theme_void". |
Plot: dendrogram for multiple samples clustering.
wei dong
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset gene_expression data(gene_expression) head(gene_expression) # 3. Default parameters dendro_plot(gene_expression) # 4. Set palette = "aaas" dendro_plot(gene_expression, palette = "aaas") # 5. Set tree_type = "circular" dendro_plot(gene_expression, tree_type = "circular")
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset gene_expression data(gene_expression) head(gene_expression) # 3. Default parameters dendro_plot(gene_expression) # 4. Set palette = "aaas" dendro_plot(gene_expression, palette = "aaas") # 5. Set tree_type = "circular" dendro_plot(gene_expression, tree_type = "circular")
Flower plot for stat common and unique gene among multiple sets.
flower_plot( flower_dat, angle = 90, a = 1, b = 2, r = 1, ellipse_col_pal = "Spectral", circle_col = "white", label_text_cex = 1 )
flower_plot( flower_dat, angle = 90, a = 1, b = 2, r = 1, ellipse_col_pal = "Spectral", circle_col = "white", label_text_cex = 1 )
flower_dat |
Dataframe: Paired comparisons differentially expressed genes (degs) among groups (1st-col~: degs of paired comparisons). |
angle |
Number: set the angle of rotation in degress. Default: 90. |
a |
Number: set the radii of the ellipses along the x-axes. Default: 0.5. |
b |
Number: set the radii of the ellipses along the y-axes. Default: 2. |
r |
Number: set the radius of the circle. Default: 1. |
ellipse_col_pal |
Character: set the color palette for filling the ellipse. Default: "Spectral", options: 'Spectral', 'Set1', 'Set2', 'Set3', 'Accent', 'Dark2', 'Paired', 'Pastel1', 'Pastel2'. |
circle_col |
Character: set the color for filling the circle. Default: "white". |
label_text_cex |
Number: set the label text cex. Default: 1. |
Plot: Flower plot for stat common and unique gene among multiple sets.
wei dong
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(degs_lists) head(degs_lists) # 3. Default parameters flower_plot(degs_lists) # 4. Set angle = 60 flower_plot(degs_lists, angle = 60) # 5. Set ellipse_col_pal = "Accent" flower_plot(degs_lists, ellipse_col_pal = "Accent") # 6. Set a = 1, b = 2, r = 1 flower_plot(degs_lists, a = 1, b = 2, r = 1, ellipse_col_pal = "Set2")
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(degs_lists) head(degs_lists) # 3. Default parameters flower_plot(degs_lists) # 4. Set angle = 60 flower_plot(degs_lists, angle = 60) # 5. Set ellipse_col_pal = "Accent" flower_plot(degs_lists, ellipse_col_pal = "Accent") # 6. Set a = 1, b = 2, r = 1 flower_plot(degs_lists, a = 1, b = 2, r = 1, ellipse_col_pal = "Set2")
Gene cluster trend plot for visualizing gene expression trend profile in multiple samples.
gene_cluster_trend( data, thres = 0.25, min_std = 0.2, palette = "PiYG", cluster_num = 4 )
gene_cluster_trend( data, thres = 0.25, min_std = 0.2, palette = "PiYG", cluster_num = 4 )
data |
Dataframe: Shared DEGs of all paired comparisons in all groups expression dataframe of RNA-Seq. (1st-col: Genes, 2nd-col~n-1-col: Groups, n-col: Pathways). |
thres |
Number: set the threshold for excluding genes. Default: 0.25. |
min_std |
Number: set the threshold for minimum standard deviation. Default: 0.2. |
palette |
Character: set the color palette to be used for plotting. Default: "PiYG", options: 'Spectral', 'BrBG', 'PiYG', 'PRGn', 'PuOr', 'RdBu', 'RdGy', 'RdYlBu', 'RdYlGn'. |
cluster_num |
Number: set the number of clusters. Default: 4. |
Plot: Gene cluster trend plot for visualizing gene expression trend profile in multiple samples.
wei dong
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset gene_cluster_data data(gene_expression3) head(gene_expression3) # 3. Default parameters gene_cluster_trend(gene_expression3[,-7]) # 4. Set palette = "RdBu" gene_cluster_trend(gene_expression3[,-7], palette = "RdBu") # 5. Set cluster_num = 6 gene_cluster_trend(gene_expression3[,-7], cluster_num = 6, palette = "Spectral")
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset gene_cluster_data data(gene_expression3) head(gene_expression3) # 3. Default parameters gene_cluster_trend(gene_expression3[,-7]) # 4. Set palette = "RdBu" gene_cluster_trend(gene_expression3[,-7], palette = "RdBu") # 5. Set cluster_num = 6 gene_cluster_trend(gene_expression3[,-7], cluster_num = 6, palette = "Spectral")
All genes in all samples expression dataframe of RNA-Seq.
data(gene_expression)
data(gene_expression)
Dataframe: All genes in all samples expression dataframe of RNA-Seq (1st-col: Genes, 2nd-col~: Samples).
benben-miao
https://github.com/BioSciTools/BioSciToolsDatasets/tree/main/CorPlot/
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example dataset gene_expression data(gene_expression) # 3. View gene_expression gene_expression
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example dataset gene_expression data(gene_expression) # 3. View gene_expression gene_expression
Shared DEGs of all paired comparisons in all samples expression dataframe of RNA-Seq.
data(gene_expression2)
data(gene_expression2)
Dataframe: Shared DEGs of all paired comparisons in all samples expression dataframe of RNA-Seq. (1st-col: Genes, 2nd-col~: Samples).
benben-miao
https://github.com/BioSciTools/BioSciToolsDatasets/tree/main/CorPlot/
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example dataset data(gene_expression2) # 3. View gene_expression2 gene_expression2
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example dataset data(gene_expression2) # 3. View gene_expression2 gene_expression2
Shared DEGs of all paired comparisons in all groups expression dataframe of RNA-Seq.
data(gene_expression3)
data(gene_expression3)
Dataframe: Shared DEGs of all paired comparisons in all groups expression dataframe of RNA-Seq. (1st-col: Genes, 2nd-col~n-1-col: Groups, n-col: Pathways).
benben-miao
https://github.com/BioSciTools/BioSciToolsDatasets/tree/main/CorPlot/
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example dataset data(gene_expression3) # 3. View gene_expression3 gene_expression3
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example dataset data(gene_expression3) # 3. View gene_expression3 gene_expression3
GO and KEGG annotation of background genes.
data(gene_go_kegg)
data(gene_go_kegg)
Dataframe: GO and KEGG annotation of background genes (1st-col: Genes, 2nd-col: biological_process, 3rd-col: cellular_component, 4th-col: molecular_function, 5th-col: kegg_pathway).
benben-miao
https://github.com/BioSciTools/BioSciToolsDatasets/tree/main/GOenrichStat/
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example data data(gene_go_kegg) # 3. View example data gene_go_kegg
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example data data(gene_go_kegg) # 3. View example data gene_go_kegg
GO and KEGG annotation of background genes.
data(gene_go_kegg2)
data(gene_go_kegg2)
Dataframe: GO and KEGG annotation of background genes (1st-col: Genes, 2nd-col: biological_process, 3rd-col: cellular_component, 4th-col: molecular_function, 5th-col: kegg_pathway).
benben-miao
https://github.com/BioSciTools/BioSciToolsDatasets/tree/main/GOenrichStat/
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example data data(gene_go_kegg2) # 3. View example data gene_go_kegg2
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example data data(gene_go_kegg2) # 3. View example data gene_go_kegg2
Gene ranking dotplot for visualizing differentailly expressed genes.
gene_rank_plot( data, log2fc = 1, palette = "Spectral", top_n = 10, genes_to_label = NULL, label_size = 5, base_size = 12, title = "Gene ranking dotplot", xlab = "Ranking of differentially expressed genes", ylab = "Log2FoldChange" )
gene_rank_plot( data, log2fc = 1, palette = "Spectral", top_n = 10, genes_to_label = NULL, label_size = 5, base_size = 12, title = "Gene ranking dotplot", xlab = "Ranking of differentially expressed genes", ylab = "Log2FoldChange" )
data |
Dataframe: All DEGs of paired comparison CT-vs-LT12 stats dataframe (1st-col: Genes, 2nd-col: log2FoldChange, 3rd-col: Pvalue, 4th-col: FDR). |
log2fc |
Numeric: log2(FoldChange) cutoff log2(2) = 1. Default: 1.0, min: 0.0, max: null. |
palette |
Character: color palette used for the point. Default: "spectral", options: 'Spectral', 'BrBG', 'PiYG', 'PRGn', 'PuOr', 'RdBu', 'RdGy', 'RdYlBu', 'RdYlGn'. |
top_n |
Numeric: number of top differentailly expressed genes. Default: 10, min: 0. |
genes_to_label |
Character: a vector of selected genes. Default: "NULL". |
label_size |
Numeric: gene label size. Default: 5, min: 0. |
base_size |
Numeric: base font size. Default: 12, min: 0. |
title |
Character: main plot title. Default: "Gene ranking dotplot". |
xlab |
Character: title of the xlab. Default: "Ranking of differentially expressed genes". |
ylab |
Character: title of the ylab. Default: "Log2FoldChange". |
Plot: Gene ranking dotplot for visualizing differentailly expressed genes.
wei dong
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(degs_stats) head(degs_stats) # 3. Default parameters gene_rank_plot(degs_stats) # 4. Set top_n = 5 gene_rank_plot(degs_stats, top_n = 5, palette = "PiYG") # 5. Set genes_to_label = c("SELL","CCR7","KLRG1","IL7R") gene_rank_plot(degs_stats, genes_to_label = c("SELL","CCR7","KLRG1","IL7R"), palette = "PuOr")
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(degs_stats) head(degs_stats) # 3. Default parameters gene_rank_plot(degs_stats) # 4. Set top_n = 5 gene_rank_plot(degs_stats, top_n = 5, palette = "PiYG") # 5. Set genes_to_label = c("SELL","CCR7","KLRG1","IL7R") gene_rank_plot(degs_stats, genes_to_label = c("SELL","CCR7","KLRG1","IL7R"), palette = "PuOr")
GO enrichment analysis based on GO annotation results (None/Exist Reference Genome).
go_enrich( go_anno, degs_list, padjust_method = "fdr", pvalue_cutoff = 0.05, qvalue_cutoff = 0.05 )
go_enrich( go_anno, degs_list, padjust_method = "fdr", pvalue_cutoff = 0.05, qvalue_cutoff = 0.05 )
go_anno |
Dataframe: GO and KEGG annotation of background genes (1st-col: Genes, 2nd-col: biological_process, 3rd-col: cellular_component, 4th-col: molecular_function, 5th-col: kegg_pathway). |
degs_list |
Dataframe: degs list. |
padjust_method |
Character: P-value adjust to Q-value. Default: "fdr" (false discovery rate), options: "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". |
pvalue_cutoff |
Numeric: P-value cutoff. Recommend: small than 0.05. |
qvalue_cutoff |
Numeric: Q-value cutoff. Recommend: small than 0.05. |
Table: include columns ("ID", "ontology", "Description", "GeneRatio", "BgRatio", "pvalue", "p.adjust", "qvalue", "geneID", "Count").
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_go_kegg) head(gene_go_kegg) # 3. Default parameters res <- go_enrich(gene_go_kegg[,-5], gene_go_kegg[100:200,1]) head(res) # 4. Set padjust_method = "BH" res <- go_enrich(gene_go_kegg[,-5], gene_go_kegg[100:200,1], padjust_method = "BH") head(res) # 5. Set pvalue_cutoff = 0.10 res <- go_enrich(gene_go_kegg[,-5], gene_go_kegg[100:200,1], pvalue_cutoff = 0.10) head(res)
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_go_kegg) head(gene_go_kegg) # 3. Default parameters res <- go_enrich(gene_go_kegg[,-5], gene_go_kegg[100:200,1]) head(res) # 4. Set padjust_method = "BH" res <- go_enrich(gene_go_kegg[,-5], gene_go_kegg[100:200,1], padjust_method = "BH") head(res) # 5. Set pvalue_cutoff = 0.10 res <- go_enrich(gene_go_kegg[,-5], gene_go_kegg[100:200,1], pvalue_cutoff = 0.10) head(res)
GO enrichment analysis and bar plot (None/Exist Reference Genome).
go_enrich_bar( go_anno, degs_list, padjust_method = "fdr", pvalue_cutoff = 0.05, qvalue_cutoff = 0.05, sign_by = "p.adjust", category_num = 30, font_size = 12, low_color = "#ff0000aa", high_color = "#008800aa", ggTheme = "theme_light" )
go_enrich_bar( go_anno, degs_list, padjust_method = "fdr", pvalue_cutoff = 0.05, qvalue_cutoff = 0.05, sign_by = "p.adjust", category_num = 30, font_size = 12, low_color = "#ff0000aa", high_color = "#008800aa", ggTheme = "theme_light" )
go_anno |
Dataframe: GO and KEGG annotation of background genes (1st-col: Genes, 2nd-col: biological_process, 3rd-col: cellular_component, 4th-col: molecular_function, 5th-col: kegg_pathway). |
degs_list |
Dataframe: degs list. |
padjust_method |
Character: P-value adjust to Q-value. Default: "fdr" (false discovery rate), options: "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". |
pvalue_cutoff |
Numeric: P-value cutoff. Recommend: small than 0.05. |
qvalue_cutoff |
Numeric: Q-value cutoff. Recommend: small than 0.05. |
sign_by |
Character: significant by. Default: "p.adjust", options: "pvalue", "p.adjust", "qvalue". |
category_num |
Numeric: categories number to display. Default: 30, min: 1, max: NULL. |
font_size |
Numeric: category font size. Default: 12. |
low_color |
Character: low value (p-value or q-value) color (color name or hex value). |
high_color |
Character: high value (p-value or q-value) color (color name or hex value). |
ggTheme |
Character: ggplot2 themes. Default: "theme_light", options: "theme_default", "theme_bw", "theme_gray", "theme_light", "theme_linedraw", "theme_dark", "theme_minimal", "theme_classic", "theme_void" |
Plot: GO enrichment analysis and bar plot (None/Exist Reference Genome).
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_go_kegg) head(gene_go_kegg) # 3. Default parameters go_enrich_bar(gene_go_kegg[,-5], gene_go_kegg[100:200,1]) # 4. Set padjust_method = "BH" go_enrich_bar(gene_go_kegg[,-5], gene_go_kegg[100:200,1], padjust_method = "BH") # 5. Set category_num = 10 go_enrich_bar(gene_go_kegg[,-5], gene_go_kegg[100:200,1], category_num = 10) # 6. Set ggTheme = "theme_bw" go_enrich_bar(gene_go_kegg[,-5], gene_go_kegg[100:200,1], ggTheme = "theme_bw")
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_go_kegg) head(gene_go_kegg) # 3. Default parameters go_enrich_bar(gene_go_kegg[,-5], gene_go_kegg[100:200,1]) # 4. Set padjust_method = "BH" go_enrich_bar(gene_go_kegg[,-5], gene_go_kegg[100:200,1], padjust_method = "BH") # 5. Set category_num = 10 go_enrich_bar(gene_go_kegg[,-5], gene_go_kegg[100:200,1], category_num = 10) # 6. Set ggTheme = "theme_bw" go_enrich_bar(gene_go_kegg[,-5], gene_go_kegg[100:200,1], ggTheme = "theme_bw")
GO enrichment analysis and dot plot (None/Exist Reference Genome).
go_enrich_dot( go_anno, degs_list, padjust_method = "fdr", pvalue_cutoff = 0.05, qvalue_cutoff = 0.05, sign_by = "p.adjust", category_num = 30, font_size = 12, low_color = "#ff0000aa", high_color = "#008800aa", ggTheme = "theme_light" )
go_enrich_dot( go_anno, degs_list, padjust_method = "fdr", pvalue_cutoff = 0.05, qvalue_cutoff = 0.05, sign_by = "p.adjust", category_num = 30, font_size = 12, low_color = "#ff0000aa", high_color = "#008800aa", ggTheme = "theme_light" )
go_anno |
Dataframe: GO and KEGG annotation of background genes (1st-col: Genes, 2nd-col: biological_process, 3rd-col: cellular_component, 4th-col: molecular_function, 5th-col: kegg_pathway). |
degs_list |
Dataframe: degs list. |
padjust_method |
Character: P-value adjust to Q-value. Default: "fdr" (false discovery rate), options: "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". |
pvalue_cutoff |
Numeric: P-value cutoff. Recommend: small than 0.05. |
qvalue_cutoff |
Numeric: Q-value cutoff. Recommend: small than 0.05. |
sign_by |
Character: significant by. Default: "p.adjust", options: "pvalue", "p.adjust", "qvalue". |
category_num |
Numeric: categories number to display. Default: 30, min: 1, max: NULL. |
font_size |
Numeric: category font size. Default: 12. |
low_color |
Character: low value (p-value or q-value) color (color name or hex value). |
high_color |
Character: high value (p-value or q-value) color (color name or hex value). |
ggTheme |
Character: ggplot2 themes. Default: "theme_light", options: "theme_default", "theme_bw", "theme_gray", "theme_light", "theme_linedraw", "theme_dark", "theme_minimal", "theme_classic", "theme_void" |
Plot: GO enrichment analysis and dot plot (None/Exist Reference Genome).
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_go_kegg) head(gene_go_kegg) # 3. Default parameters go_enrich_dot(gene_go_kegg[,-5], gene_go_kegg[100:200,1]) # 4. Set padjust_method = "BH" go_enrich_dot(gene_go_kegg[,-5], gene_go_kegg[100:200,1], padjust_method = "BH") # 5. Set category_num = 10 go_enrich_dot(gene_go_kegg[,-5], gene_go_kegg[100:200,1], category_num = 10) # 6. Set ggTheme = "theme_bw" go_enrich_dot(gene_go_kegg[,-5], gene_go_kegg[100:200,1], ggTheme = "theme_bw")
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_go_kegg) head(gene_go_kegg) # 3. Default parameters go_enrich_dot(gene_go_kegg[,-5], gene_go_kegg[100:200,1]) # 4. Set padjust_method = "BH" go_enrich_dot(gene_go_kegg[,-5], gene_go_kegg[100:200,1], padjust_method = "BH") # 5. Set category_num = 10 go_enrich_dot(gene_go_kegg[,-5], gene_go_kegg[100:200,1], category_num = 10) # 6. Set ggTheme = "theme_bw" go_enrich_dot(gene_go_kegg[,-5], gene_go_kegg[100:200,1], ggTheme = "theme_bw")
GO enrichment analysis and net plot (None/Exist Reference Genome).
go_enrich_net( go_anno, degs_list, padjust_method = "fdr", pvalue_cutoff = 0.05, qvalue_cutoff = 0.05, category_num = 20, net_layout = "circle", net_circular = TRUE, low_color = "#ff0000aa", high_color = "#008800aa" )
go_enrich_net( go_anno, degs_list, padjust_method = "fdr", pvalue_cutoff = 0.05, qvalue_cutoff = 0.05, category_num = 20, net_layout = "circle", net_circular = TRUE, low_color = "#ff0000aa", high_color = "#008800aa" )
go_anno |
Dataframe: GO and KEGG annotation of background genes (1st-col: Genes, 2nd-col: biological_process, 3rd-col: cellular_component, 4th-col: molecular_function, 5th-col: kegg_pathway). |
degs_list |
Dataframe: degs list. |
padjust_method |
Character: P-value adjust to Q-value. Default: "fdr" (false discovery rate), options: "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". |
pvalue_cutoff |
Numeric: P-value cutoff. Recommend: small than 0.05. |
qvalue_cutoff |
Numeric: Q-value cutoff. Recommend: small than 0.05. |
category_num |
Numeric: categories number to display. Default: 20, min: 1, max: NULL. |
net_layout |
Character: network layout. Default: "circle", options: 'star', 'circle', 'gem', 'dh', 'graphopt', 'grid', 'mds', 'randomly', 'fr', 'kk', 'drl' or 'lgl'. |
net_circular |
Logical: network circular. Default: TRUE, options: TRUE, FALSE. |
low_color |
Character: low value (p-value or q-value) color (color name or hex value). |
high_color |
Character: high value (p-value or q-value) color (color name or hex value). |
PLot: GO enrichment analysis and net plot (None/Exist Reference Genome).
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_go_kegg) head(gene_go_kegg) # 3. Default parameters go_enrich_net(gene_go_kegg[,-5], gene_go_kegg[100:200,1])
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_go_kegg) head(gene_go_kegg) # 3. Default parameters go_enrich_net(gene_go_kegg[,-5], gene_go_kegg[100:200,1])
GO enrichment analysis and stat plot (None/Exist Reference Genome).
go_enrich_stat( go_anno, degs_list, padjust_method = "fdr", pvalue_cutoff = 0.05, qvalue_cutoff = 0.05, max_go_item = 15, strip_fill = "#CDCDCD", xtext_angle = 45, sci_fill_color = "Sci_AAAS", sci_fill_alpha = 0.8, ggTheme = "theme_light" )
go_enrich_stat( go_anno, degs_list, padjust_method = "fdr", pvalue_cutoff = 0.05, qvalue_cutoff = 0.05, max_go_item = 15, strip_fill = "#CDCDCD", xtext_angle = 45, sci_fill_color = "Sci_AAAS", sci_fill_alpha = 0.8, ggTheme = "theme_light" )
go_anno |
Dataframe: GO and KEGG annotation of background genes (1st-col: Genes, 2nd-col: biological_process, 3rd-col: cellular_component, 4th-col: molecular_function, 5th-col: kegg_pathway). |
degs_list |
Dataframe: degs list. |
padjust_method |
Character: P-value adjust to Q-value. Default: "fdr" (false discovery rate), options: "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". |
pvalue_cutoff |
Numeric: P-value cutoff. Recommend: small than 0.05. |
qvalue_cutoff |
Numeric: Q-value cutoff. Recommend: small than 0.05. |
max_go_item |
Numeric: max BP/CC/MF terms. Default: 15, min: 1, max: NULL. |
strip_fill |
Character: strip fill color (color name or hex value). Default: "#CDCDCD". |
xtext_angle |
Numeric: x axis texts angle. Default: 45, min: 0, max: 360. |
sci_fill_color |
Character: ggsci color pallet. Default: "Sci_AAAS", options: "Sci_AAAS", "Sci_NPG", "Sci_Simpsons", "Sci_JAMA", "Sci_GSEA", "Sci_Lancet", "Sci_Futurama", "Sci_JCO", "Sci_NEJM", "Sci_IGV", "Sci_UCSC", "Sci_D3", "Sci_Material". |
sci_fill_alpha |
Numeric: ggsci fill color alpha. Default: 0.80, min: 0.00, max: 1.00. |
ggTheme |
Character: ggplot2 themes. Default: "theme_light", options: "theme_default", "theme_bw", "theme_gray", "theme_light", "theme_linedraw", "theme_dark", "theme_minimal", "theme_classic", "theme_void" |
Plot: GO enrichment analysis and stat plot (None/Exist Reference Genome).
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_go_kegg) head(gene_go_kegg) # 3. Default parameters go_enrich_stat(gene_go_kegg[,-5], gene_go_kegg[100:200,1]) # 4. Set padjust_method = "BH" go_enrich_stat(gene_go_kegg[,-5], gene_go_kegg[100:200,1], padjust_method = "BH") # 5. Set max_go_item = 10 go_enrich_stat(gene_go_kegg[,-5], gene_go_kegg[100:200,1], max_go_item = 10) # 6. Set strip_fill = "#008888" go_enrich_stat(gene_go_kegg[,-5], gene_go_kegg[100:200,1], strip_fill = "#008888") # 7. Set sci_fill_color = "Sci_JAMA" go_enrich_stat(gene_go_kegg[,-5], gene_go_kegg[100:200,1], sci_fill_color = "Sci_JAMA")
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_go_kegg) head(gene_go_kegg) # 3. Default parameters go_enrich_stat(gene_go_kegg[,-5], gene_go_kegg[100:200,1]) # 4. Set padjust_method = "BH" go_enrich_stat(gene_go_kegg[,-5], gene_go_kegg[100:200,1], padjust_method = "BH") # 5. Set max_go_item = 10 go_enrich_stat(gene_go_kegg[,-5], gene_go_kegg[100:200,1], max_go_item = 10) # 6. Set strip_fill = "#008888" go_enrich_stat(gene_go_kegg[,-5], gene_go_kegg[100:200,1], strip_fill = "#008888") # 7. Set sci_fill_color = "Sci_JAMA" go_enrich_stat(gene_go_kegg[,-5], gene_go_kegg[100:200,1], sci_fill_color = "Sci_JAMA")
Heatmap cluster for visualizing clustered gene expression data.
heatmap_cluster( data, dist_method = "euclidean", hc_method = "average", k_num = 5, show_rownames = FALSE, palette = "RdBu", cluster_pal = "Set1", border_color = "#ffffff", angle_col = 45, label_size = 10, base_size = 12, line_color = "#0000cd", line_alpha = 0.2, summary_color = "#0000cd", summary_alpha = 0.8 )
heatmap_cluster( data, dist_method = "euclidean", hc_method = "average", k_num = 5, show_rownames = FALSE, palette = "RdBu", cluster_pal = "Set1", border_color = "#ffffff", angle_col = 45, label_size = 10, base_size = 12, line_color = "#0000cd", line_alpha = 0.2, summary_color = "#0000cd", summary_alpha = 0.8 )
data |
Dataframe: Shared DEGs of all paired comparisons in all samples expression dataframe of RNA-Seq. (1st-col: Genes, 2nd-col~: Samples). |
dist_method |
Character: distance measure method. Default: "euclidean", options: "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski". |
hc_method |
Character: hierarchical clustering method. Default: "average", options: "ward.D", "ward.D2", "single", "complete","average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC). |
k_num |
Numeric: the number of groups for cutting the tree. Default: 5. |
show_rownames |
Logical: boolean specifying if column names are be shown. Default: FALSE, options: TRUE or FALSE. |
palette |
Character: color palette used in heatmap. Default: "RdBu", options: 'Spectral', 'BrBG', 'PiYG', 'PRGn', 'PuOr', 'RdBu', 'RdGy', 'RdYlBu', 'RdYlGn'. |
cluster_pal |
Character: color palette used for the cluster. Default: "Set1", options: 'Set1', 'Set2', 'Set3', 'Accent', 'Dark2', 'Paired', 'Pastel1', 'Pastel2'. |
border_color |
Character: cell border color (color name or hex value). Default: "#ffffff". |
angle_col |
Numeric: angle of the column labels. Default: 45. |
label_size |
Numeric: fontsize for the plot. Default: 10, min: 0. |
base_size |
Numeric: base font size. Default: 12, min: 0. |
line_color |
Character: trend lines color. Default: "#0000cd". |
line_alpha |
Numeric: trend lines alpha. Default: 0.20, min: 0.00, max: 1.00. |
summary_color |
Charater: summary line color. Default: "#0000cd". |
summary_alpha |
Numeric: summary line alpha. Default: 0.80, min: 0.00, max: 1.00. |
Plot: Heatmap cluster for visualizing clustered gene expression data.
wei dong
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_expression2) head(gene_expression2) # 3. Default parameters heatmap_cluster(gene_expression2) # 4. Set palette = "PuOr" heatmap_cluster(gene_expression2, palette = "PuOr") # 5. Set line_color = "#ff0000", summary_color = "#ff0000" heatmap_cluster(gene_expression2, line_color = "#ff0000", summary_color = "#ff0000")
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_expression2) head(gene_expression2) # 3. Default parameters heatmap_cluster(gene_expression2) # 4. Set palette = "PuOr" heatmap_cluster(gene_expression2, palette = "PuOr") # 5. Set line_color = "#ff0000", summary_color = "#ff0000" heatmap_cluster(gene_expression2, line_color = "#ff0000", summary_color = "#ff0000")
Heatmap group for visualizing grouped gene expression data.
heatmap_group( sample_gene, group_sample, scale_data = "row", clust_method = "complete", border_show = TRUE, border_color = "#ffffff", value_show = TRUE, value_decimal = 2, value_size = 5, axis_size = 8, cell_height = 10, low_color = "#00880055", mid_color = "#ffffff", high_color = "#ff000055", na_color = "#ff8800", x_angle = 45 )
heatmap_group( sample_gene, group_sample, scale_data = "row", clust_method = "complete", border_show = TRUE, border_color = "#ffffff", value_show = TRUE, value_decimal = 2, value_size = 5, axis_size = 8, cell_height = 10, low_color = "#00880055", mid_color = "#ffffff", high_color = "#ff000055", na_color = "#ff8800", x_angle = 45 )
sample_gene |
Dataframe: Shared degs of all paired comparisons in all samples expression dataframe of RNA-Seq. (1st-col: Genes, 2nd-col~: Samples). |
group_sample |
Dataframe: Samples and groups for gene expression (1st-col: Samples, 2nd-col: Groups). |
scale_data |
Character: scale data. Default: "row", options: "row", "column", "none". |
clust_method |
Character: cluster method. Default: "complete", options: "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC). |
border_show |
Logical: show border. Default: TRUE, options: TRUE, FALSE. |
border_color |
Character: cell border color (color value or hex value with alpha). Default: "#ffffff". |
value_show |
Logical: show value in cell. Default: TRUE, options: TRUE, FALSE. |
value_decimal |
Numeric: cell value decimal. Default: 2, min: 0, max: 5. |
value_size |
Numeric: cell value font size. Default: 5, min: 0, max: NULL. |
axis_size |
Numeric: axis title font size. Default: 8, min: 0, max: NULL. |
cell_height |
Numeric: cell height for value size and axis size. Default: 10. |
low_color |
Character: min value color (color value or hex value with alpha). Default: "#00880055". |
mid_color |
Character: min value color (color value or hex value with alpha). Default: "#ffffff". |
high_color |
Character: min value color (color value or hex value with alpha). Default: "#ff000055". |
na_color |
Character: min value color (color value or hex value with alpha). Default: "#ff8800". |
x_angle |
Numeric: x axis text angle. Default: 45, min: 0, max: 360. |
Plot: Heatmap group for visualizing grouped gene expression data.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_expression2) head(gene_expression2) data(samples_groups) head(samples_groups) # 3. Default parameters heatmap_group(gene_expression2[1:50,], samples_groups) # 4. Set scale_data = "column" heatmap_group(gene_expression2[1:50,], samples_groups, scale_data = "column") # 5. Set value_show = FALSE heatmap_group(gene_expression2[1:50,], samples_groups, value_show = FALSE) # 6. Set low_color = "#00008888" heatmap_group(gene_expression2[1:50,], samples_groups, low_color = "#00008888")
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_expression2) head(gene_expression2) data(samples_groups) head(samples_groups) # 3. Default parameters heatmap_group(gene_expression2[1:50,], samples_groups) # 4. Set scale_data = "column" heatmap_group(gene_expression2[1:50,], samples_groups, scale_data = "column") # 5. Set value_show = FALSE heatmap_group(gene_expression2[1:50,], samples_groups, value_show = FALSE) # 6. Set low_color = "#00008888" heatmap_group(gene_expression2[1:50,], samples_groups, low_color = "#00008888")
KEGG enrichment analysis based on KEGG annotation results (None/Exist Reference Genome).
kegg_enrich( kegg_anno, degs_list, padjust_method = "fdr", pvalue_cutoff = 0.05, qvalue_cutoff = 0.05 )
kegg_enrich( kegg_anno, degs_list, padjust_method = "fdr", pvalue_cutoff = 0.05, qvalue_cutoff = 0.05 )
kegg_anno |
Dataframe: GO and KEGG annotation of background genes (1st-col: Genes, 2nd-col: biological_process, 3rd-col: cellular_component, 4th-col: molecular_function, 5th-col: kegg_pathway). |
degs_list |
Dataframe: degs list. |
padjust_method |
Character: P-value adjust to Q-value. Default: "fdr" (false discovery rate), options: "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". |
pvalue_cutoff |
Numeric: P-value cutoff. Recommend: small than 0.05. |
qvalue_cutoff |
Numeric: Q-value cutoff. Recommend: small than 0.05. |
Table: include columns ("ID", "Description", "GeneRatio", "BgRatio", "pvalue", "p.adjust", "qvalue", "geneID", "Count").
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_go_kegg) head(gene_go_kegg) # 3. Default parameters res <- kegg_enrich(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1]) head(res) # 4. Set padjust_method = "BH" res <- kegg_enrich(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1], padjust_method = "BH") head(res) # 5. Set pvalue_cutoff = 0.80 res <- kegg_enrich(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1], pvalue_cutoff = 0.80) head(res)
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_go_kegg) head(gene_go_kegg) # 3. Default parameters res <- kegg_enrich(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1]) head(res) # 4. Set padjust_method = "BH" res <- kegg_enrich(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1], padjust_method = "BH") head(res) # 5. Set pvalue_cutoff = 0.80 res <- kegg_enrich(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1], pvalue_cutoff = 0.80) head(res)
KEGG enrichment analysis and bar plot (None/Exist Reference Genome).
kegg_enrich_bar( kegg_anno, degs_list, padjust_method = "fdr", pvalue_cutoff = 0.05, qvalue_cutoff = 0.05, sign_by = "p.adjust", category_num = 30, font_size = 12, low_color = "#ff0000aa", high_color = "#008800aa", ggTheme = "theme_light" )
kegg_enrich_bar( kegg_anno, degs_list, padjust_method = "fdr", pvalue_cutoff = 0.05, qvalue_cutoff = 0.05, sign_by = "p.adjust", category_num = 30, font_size = 12, low_color = "#ff0000aa", high_color = "#008800aa", ggTheme = "theme_light" )
kegg_anno |
Dataframe: GO and KEGG annotation of background genes (1st-col: Genes, 2nd-col: biological_process, 3rd-col: cellular_component, 4th-col: molecular_function, 5th-col: kegg_pathway). |
degs_list |
Dataframe: degs list. |
padjust_method |
Character: P-value adjust to Q-value. Default: "fdr" (false discovery rate), options: "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". |
pvalue_cutoff |
Numeric: P-value cutoff. Recommend: small than 0.05. |
qvalue_cutoff |
Numeric: Q-value cutoff. Recommend: small than 0.05. |
sign_by |
Character: significant by. Default: "p.adjust", options: "pvalue", "p.adjust", "qvalue". |
category_num |
Numeric: categories number to display. Default: 30, min: 1, max: NULL. |
font_size |
Numeric: category font size. Default: 12. |
low_color |
Character: low value (p-value or q-value) color (color name or hex value). |
high_color |
Character: high value (p-value or q-value) color (color name or hex value). |
ggTheme |
Character: ggplot2 themes. Default: "theme_light", options: "theme_default", "theme_bw", "theme_gray", "theme_light", "theme_linedraw", "theme_dark", "theme_minimal", "theme_classic", "theme_void". |
Plot: KEGG enrichment analysis and bar plot (None/Exist Reference Genome).
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_go_kegg) head(gene_go_kegg) # 3. Default parameters kegg_enrich_bar(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1]) # 4. Set padjust_method = "BH" kegg_enrich_bar(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1], padjust_method = "BH") # 5. Set category_num = 10 kegg_enrich_bar(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1], category_num = 10) # 6. Set ggTheme = "theme_bw" kegg_enrich_bar(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1], ggTheme = "theme_bw")
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_go_kegg) head(gene_go_kegg) # 3. Default parameters kegg_enrich_bar(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1]) # 4. Set padjust_method = "BH" kegg_enrich_bar(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1], padjust_method = "BH") # 5. Set category_num = 10 kegg_enrich_bar(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1], category_num = 10) # 6. Set ggTheme = "theme_bw" kegg_enrich_bar(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1], ggTheme = "theme_bw")
KEGG enrichment analysis and dot plot (None/Exist Reference Genome).
kegg_enrich_dot( kegg_anno, degs_list, padjust_method = "fdr", pvalue_cutoff = 0.05, qvalue_cutoff = 0.05, sign_by = "p.adjust", category_num = 30, font_size = 12, low_color = "#ff0000aa", high_color = "#008800aa", ggTheme = "theme_light" )
kegg_enrich_dot( kegg_anno, degs_list, padjust_method = "fdr", pvalue_cutoff = 0.05, qvalue_cutoff = 0.05, sign_by = "p.adjust", category_num = 30, font_size = 12, low_color = "#ff0000aa", high_color = "#008800aa", ggTheme = "theme_light" )
kegg_anno |
Dataframe: GO and KEGG annotation of background genes (1st-col: Genes, 2nd-col: biological_process, 3rd-col: cellular_component, 4th-col: molecular_function, 5th-col: kegg_pathway). |
degs_list |
Dataframe: degs list. |
padjust_method |
Character: P-value adjust to Q-value. Default: "fdr" (false discovery rate), options: "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". |
pvalue_cutoff |
Numeric: P-value cutoff. Recommend: small than 0.05. |
qvalue_cutoff |
Numeric: Q-value cutoff. Recommend: small than 0.05. |
sign_by |
Character: significant by. Default: "p.adjust", options: "pvalue", "p.adjust", "qvalue". |
category_num |
Numeric: categories number to display. Default: 30, min: 1, max: NULL. |
font_size |
Numeric: category font size. Default: 12. |
low_color |
Character: low value (p-value or q-value) color (color name or hex value). |
high_color |
Character: high value (p-value or q-value) color (color name or hex value). |
ggTheme |
Character: ggplot2 themes. Default: "theme_light", options: "theme_default", "theme_bw", "theme_gray", "theme_light", "theme_linedraw", "theme_dark", "theme_minimal", "theme_classic", "theme_void" |
Plot: KEGG enrichment analysis and dot plot (None/Exist Reference Genome).
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_go_kegg) head(gene_go_kegg) # 3. Default parameters kegg_enrich_dot(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1]) # 4. Set padjust_method = "BH" kegg_enrich_dot(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1], padjust_method = "BH") # 5. Set category_num = 10 kegg_enrich_dot(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1], category_num = 10) # 6. Set ggTheme = "theme_bw" kegg_enrich_dot(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1], ggTheme = "theme_bw")
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_go_kegg) head(gene_go_kegg) # 3. Default parameters kegg_enrich_dot(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1]) # 4. Set padjust_method = "BH" kegg_enrich_dot(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1], padjust_method = "BH") # 5. Set category_num = 10 kegg_enrich_dot(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1], category_num = 10) # 6. Set ggTheme = "theme_bw" kegg_enrich_dot(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1], ggTheme = "theme_bw")
KEGG enrichment analysis and net plot (None/Exist Reference Genome).
kegg_enrich_net( kegg_anno, degs_list, padjust_method = "fdr", pvalue_cutoff = 0.05, qvalue_cutoff = 0.05, category_num = 20, net_layout = "circle", net_circular = TRUE, low_color = "#ff0000aa", high_color = "#008800aa" )
kegg_enrich_net( kegg_anno, degs_list, padjust_method = "fdr", pvalue_cutoff = 0.05, qvalue_cutoff = 0.05, category_num = 20, net_layout = "circle", net_circular = TRUE, low_color = "#ff0000aa", high_color = "#008800aa" )
kegg_anno |
Dataframe: GO and KEGG annotation of background genes (1st-col: Genes, 2nd-col: biological_process, 3rd-col: cellular_component, 4th-col: molecular_function, 5th-col: kegg_pathway). |
degs_list |
Dataframe: degs list. |
padjust_method |
Character: P-value adjust to Q-value. Default: "fdr" (false discovery rate), options: "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". |
pvalue_cutoff |
Numeric: P-value cutoff. Recommend: small than 0.05. |
qvalue_cutoff |
Numeric: Q-value cutoff. Recommend: small than 0.05. |
category_num |
Numeric: categories number to display. Default: 20, min: 1, max: NULL. |
net_layout |
Character: network layout. Default: "circle", options: 'star', 'circle', 'gem', 'dh', 'graphopt', 'grid', 'mds', 'randomly', 'fr', 'kk', 'drl' or 'lgl'. |
net_circular |
Logical: network circular. Default: TRUE, options: TRUE, FALSE. |
low_color |
Character: low value (p-value or q-value) color (color name or hex value). |
high_color |
Character: high value (p-value or q-value) color (color name or hex value). |
Plot: KEGG enrichment analysis and net plot (None/Exist Reference Genome).
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_go_kegg) head(gene_go_kegg) # 3. Default parameters kegg_enrich_net(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1]) # 4. Set category_num = 10 kegg_enrich_net(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1], category_num = 10)
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_go_kegg) head(gene_go_kegg) # 3. Default parameters kegg_enrich_net(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1]) # 4. Set category_num = 10 kegg_enrich_net(gene_go_kegg[,c(1,5)], gene_go_kegg[100:200,1], category_num = 10)
MversusA plot for visualizing differentially expressed genes.
ma_plot( data, foldchange = 1, fdr_value = 0.05, point_size = 3, color_up = "#FF0000", color_down = "#008800", color_alpha = 0.5, top_method = "fc", top_num = 20, label_size = 8, label_box = TRUE, title = "CT-vs-LT12", xlab = "Log2 mean expression", ylab = "Log2 fold change", ggTheme = "theme_light" )
ma_plot( data, foldchange = 1, fdr_value = 0.05, point_size = 3, color_up = "#FF0000", color_down = "#008800", color_alpha = 0.5, top_method = "fc", top_num = 20, label_size = 8, label_box = TRUE, title = "CT-vs-LT12", xlab = "Log2 mean expression", ylab = "Log2 fold change", ggTheme = "theme_light" )
data |
Dataframe: differentially expressed genes (DEGs) stats 2 (1st-col: Gene, 2nd-col: baseMean, 3rd-col: Log2FoldChange, 4th-col: FDR). |
foldchange |
Numeric: fold change value. Default: 1.0, min: 0.0, max: null. |
fdr_value |
Numeric: false discovery rate. Default: 0.05, min: 0.00, max: 1.00. |
point_size |
Numeric: point size. Default: 1.0, min: 0.0, max: null. |
color_up |
Character: up-regulated genes color (color name or hex value). Default: "#FF0000". |
color_down |
Character: down-regulated genes color (color name or hex value). Default: "#008800". |
color_alpha |
Numeric: point color alpha. Default: 0.50, min: 0.00, max: 1.00. |
top_method |
Character: top genes select method. Default: "fc" (fold change), options: "padj" (p-adjust), "fc". |
top_num |
Numeric: top genes number. Default: 20, min: 0, max: null. |
label_size |
Numeric: label font size. Default: 8.00, min: 0.00, max: null. |
label_box |
Logical: add box to label. Default: TRUE, options: TRUE, FALSE. |
title |
Character: plot title. Default: "CT-vs-Trait1". |
xlab |
Character: x label. Default: "Log2 mean expression". |
ylab |
Character: y label. Default: "Log2 fold change". |
ggTheme |
Character: ggplot2 themes. Default: "theme_light", options: "theme_default", "theme_bw", "theme_gray", "theme_light", "theme_linedraw", "theme_dark", "theme_minimal", "theme_classic", "theme_void" |
Plot: MversusA plot for visualizing differentially expressed genes.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(degs_stats2) head(degs_stats2) # 3. Default parameters ma_plot(degs_stats2) # 4. Set color_up = "#FF8800" ma_plot(degs_stats2, color_up = "#FF8800") # 5. Set top_num = 10 ma_plot(degs_stats2, top_num = 10)
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(degs_stats2) head(degs_stats2) # 3. Default parameters ma_plot(degs_stats2) # 4. Set color_up = "#FF8800" ma_plot(degs_stats2, color_up = "#FF8800") # 5. Set top_num = 10 ma_plot(degs_stats2, top_num = 10)
Network data from WGCNA tan module top-200 dataframe.
data(network_data)
data(network_data)
Dataframe: Network data from WGCNA tan module top-200 dataframe (1st-col: Source, 2nd-col: Target).
benben-miao
https://github.com/BioSciTools/BioSciToolsDatasets/tree/main/NetworkPlot/
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example data data(network_data) # 3. View example data network_data
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example data data(network_data) # 3. View example data network_data
Network plot for analyzing and visualizing relationship of genes.
network_plot( data, calc_by = "degree", degree_value = 0.5, normal_color = "#008888cc", border_color = "#FFFFFF", from_color = "#FF0000cc", to_color = "#008800cc", normal_shape = "circle", spatial_shape = "circle", node_size = 25, lable_color = "#FFFFFF", label_size = 0.5, edge_color = "#888888", edge_width = 1.5, edge_curved = TRUE, net_layout = "layout_on_sphere" )
network_plot( data, calc_by = "degree", degree_value = 0.5, normal_color = "#008888cc", border_color = "#FFFFFF", from_color = "#FF0000cc", to_color = "#008800cc", normal_shape = "circle", spatial_shape = "circle", node_size = 25, lable_color = "#FFFFFF", label_size = 0.5, edge_color = "#888888", edge_width = 1.5, edge_curved = TRUE, net_layout = "layout_on_sphere" )
data |
Dataframe: Network data from WGCNA tan module top-200 dataframe (1st-col: Source, 2nd-col: Target). |
calc_by |
Character: calculate relationship by "degree", "node". Default: "degree". |
degree_value |
Numeric: degree value when calc_by = "degree". Default: 0.05, min: 0.00, max: 1.00. |
normal_color |
Character: normal relationship nodes color (color name of hex value). |
border_color |
Character: node border color (color name or hex value). |
from_color |
Character: the start color of nodes that meet degree_value. |
to_color |
Character: the end color of nodes that meet degree_value. |
normal_shape |
Character: normal node shape. Default: "circle", options: "circle", "crectangle", "csquare", "none", "pie", "raster", "rectangle", "sphere", "square", "vrectangle". |
spatial_shape |
Character: meet degree_value node shape. Default: "csquare", options: "circle", "crectangle", "csquare", "none", "pie", "raster", "rectangle", "sphere", "square", "vrectangle". |
node_size |
Numeric: node size. Default: 10, min: 0, max: NULL. |
lable_color |
Character: gene labels color. Default: "#FFFFFF". |
label_size |
Numeric: node label size. Default: 0.5, min: 0, max: NULL. |
edge_color |
Character: edges color. Default: "#888888". |
edge_width |
Numeric: edges width. Default: 1.5. |
edge_curved |
Logical: curved edges. Default: TRUE, options: TRUE, FALSE. |
net_layout |
Character: network layout. Default: "layout_on_sphere", options: "layout_as_bipartite", "layout_as_star", "layout_as_tree", "layout_components", "layout_in_circle", "layout_nicely", "layout_on_grid", "layout_on_sphere","layout_randomly","layout_with_dh","layout_with_drl","layout_with_fr","layout_with_gem","layout_with_graphopt","layout_with_kk","layout_with_lgl","layout_with_mds","layout_with_sugiyama". |
Plot: network plot for analyzing and visualizing relationship of genes.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(network_data) head(network_data) # 3. Default parameters network_plot(network_data) # 4. Set calc_by = "node" network_plot(network_data, calc_by = "node") # 5. Set degree_value = 0.1 network_plot(network_data, degree_value = 0.1) # 6. Set normal_color = "#ff8800cc" network_plot(network_data, normal_color = "#ff8800cc") # 7. Set net_layout = "layout_as_tree" network_plot(network_data, net_layout = "layout_as_tree")
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(network_data) head(network_data) # 3. Default parameters network_plot(network_data) # 4. Set calc_by = "node" network_plot(network_data, calc_by = "node") # 5. Set degree_value = 0.1 network_plot(network_data, degree_value = 0.1) # 6. Set normal_color = "#ff8800cc" network_plot(network_data, normal_color = "#ff8800cc") # 7. Set net_layout = "layout_as_tree" network_plot(network_data, net_layout = "layout_as_tree")
PCA dimensional reduction analysis for RNA-Seq.
pca_analysis(sample_gene, group_sample)
pca_analysis(sample_gene, group_sample)
sample_gene |
Dataframe: All genes in all samples expression dataframe of RNA-Seq (1st-col: Genes, 2nd-col~: Samples). |
group_sample |
Dataframe: Samples and groups for gene expression (1st-col: Samples, 2nd-col: Groups). |
Table: PCA dimensional reduction analysis for RNA-Seq.
benben-miao
# 1. Library package TOmicsVis library(TOmicsVis) # 2. Load example datasets data(gene_expression) head(gene_expression) data(samples_groups) head(samples_groups) # 3. Default parameters res <- pca_analysis(gene_expression, samples_groups) head(res)
# 1. Library package TOmicsVis library(TOmicsVis) # 2. Load example datasets data(gene_expression) head(gene_expression) data(samples_groups) head(samples_groups) # 3. Default parameters res <- pca_analysis(gene_expression, samples_groups) head(res)
PCA dimensional reduction visualization for RNA-Seq.
pca_plot( sample_gene, group_sample, xPC = 1, yPC = 2, multi_shape = TRUE, point_size = 5, point_alpha = 0.8, text_size = 5, fill_alpha = 0.05, border_alpha = 0, sci_fill_color = "Sci_AAAS", legend_pos = "right", legend_dir = "vertical", ggTheme = "theme_light" )
pca_plot( sample_gene, group_sample, xPC = 1, yPC = 2, multi_shape = TRUE, point_size = 5, point_alpha = 0.8, text_size = 5, fill_alpha = 0.05, border_alpha = 0, sci_fill_color = "Sci_AAAS", legend_pos = "right", legend_dir = "vertical", ggTheme = "theme_light" )
sample_gene |
Dataframe: All genes in all samples expression dataframe of RNA-Seq (1st-col: Genes, 2nd-col~: Samples). |
group_sample |
Dataframe: Samples and groups for gene expression (1st-col: Samples, 2nd-col: Groups). |
xPC |
Numeric: PC index at x axis. Default: 1, options: 1, 2, 3, ... |
yPC |
Numeric: PC index at y axis. Default: 2, options: 2, 3, 4, ... |
multi_shape |
Logical: groups as shapes. Default: TRUE, options: TRUE, FALSE. |
point_size |
Numeric: PCA plot point size. Default: 5, min: 0. |
point_alpha |
Numeric: point color alpha. Default: 0.80, min: 0.00, max: 1.00. |
text_size |
Numeric: PCA plot annotation size. Default: 5, min: 0. |
fill_alpha |
Numeric: ellipse fill color alpha. Default: 0.10, min: 0.00, max: 1.00. |
border_alpha |
Numeric: ellipse border color alpha. Default: 0.10, min: 0.00, max: 1.00. |
sci_fill_color |
Character: ggsci color pallet. Default: "Sci_AAAS", options: "Sci_AAAS", "Sci_NPG", "Sci_Simpsons", "Sci_JAMA", "Sci_GSEA", "Sci_Lancet", "Sci_Futurama", "Sci_JCO", "Sci_NEJM", "Sci_IGV", "Sci_UCSC", "Sci_D3", "Sci_Material". |
legend_pos |
Character: legend position. Default: "right", options: "none", "left", "right", "bottom", "top". |
legend_dir |
Character: legend director. Default: "vertical", options: "horizontal", "vertical". |
ggTheme |
Character: ggplot2 theme. Default: "theme_light", options: "theme_default", "theme_bw", "theme_gray", "theme_light", "theme_linedraw", "theme_dark", "theme_minimal", "theme_classic", "theme_void". |
Plot: PCA dimensional reduction visualization for RNA-Seq.
benben-miao
# 1. Library package TOmicsVis library(TOmicsVis) # 2. Load example datasets data(gene_expression) head(gene_expression) data(samples_groups) head(samples_groups) # 3. Default parameters pca_plot(gene_expression, samples_groups) # 4. Set multi_shape = FALSE pca_plot(gene_expression, samples_groups, multi_shape = FALSE) # 5. Set sci_fill_color = "Sci_NPG", fill_alpha = 0.10 pca_plot(gene_expression, samples_groups, sci_fill_color = "Sci_NPG", fill_alpha = 0.10)
# 1. Library package TOmicsVis library(TOmicsVis) # 2. Load example datasets data(gene_expression) head(gene_expression) data(samples_groups) head(samples_groups) # 3. Default parameters pca_plot(gene_expression, samples_groups) # 4. Set multi_shape = FALSE pca_plot(gene_expression, samples_groups, multi_shape = FALSE) # 5. Set sci_fill_color = "Sci_NPG", fill_alpha = 0.10 pca_plot(gene_expression, samples_groups, sci_fill_color = "Sci_NPG", fill_alpha = 0.10)
Quantile plot for visualizing data distribution.
quantile_plot( data, my_shape = "fill_circle", point_size = 1.5, conf_int = TRUE, conf_level = 0.95, split_panel = "Split_Panel", legend_pos = "right", legend_dir = "vertical", sci_fill_color = "Sci_NPG", sci_color_alpha = 0.75, ggTheme = "theme_light" )
quantile_plot( data, my_shape = "fill_circle", point_size = 1.5, conf_int = TRUE, conf_level = 0.95, split_panel = "Split_Panel", legend_pos = "right", legend_dir = "vertical", sci_fill_color = "Sci_NPG", sci_color_alpha = 0.75, ggTheme = "theme_light" )
data |
Dataframe: Weight and Sex traits dataframe (1st-col: Weight, 2nd-col: Sex). |
my_shape |
Character: scatter shape. Default: "fill_circle", options: "border_square", "border_circle", "border_triangle", "plus", "times", "border_diamond", "border_triangle_down", "square_times", "plus_times", "diamond_plus", "circle_plus", "di_triangle", "square_plus", "circle_times","square_triangle", "fill_square", "fill_circle", "fill_triangle", "fill_diamond", "large_circle", "small_circle", "fill_border_circle", "fill_border_square", "fill_border_diamond", "fill_border_triangle". |
point_size |
Numeric: point size. Default: 1.5, min: 0.0, max: not required. |
conf_int |
Logical: confidence interval (CI). Default: TRUE, options: TRUE or FALSE. |
conf_level |
Numeric: confidence interval value. Default: 0.95, min: 0.00, max: 1.00. |
split_panel |
Character: split panel by groups. Default: "Split_Panel", options: "One_Panel", "Split_Panel". |
legend_pos |
Character: legend position. Default: "right", options: "none", "left", "right", "bottom", "top". |
legend_dir |
Character: legend direction. Default: "vertical", options: "horizontal", "vertical". |
sci_fill_color |
Character: ggsci fill or color palette. Default: "Sci_NPG", options: "Sci_AAAS", "Sci_NPG", "Sci_Simpsons", "Sci_JAMA", "Sci_GSEA", "Sci_Lancet", "Sci_Futurama", "Sci_JCO", "Sci_NEJM", "Sci_IGV", "Sci_UCSC", "Sci_D3", "Sci_Material". |
sci_color_alpha |
Numeric: ggsci border color alpha. Default: 0.75, min: 0.00, max: 1.00. |
ggTheme |
Character: ggplot2 themes. Default: "theme_light", options: "theme_default", "theme_bw", "theme_gray", "theme_light", "theme_linedraw", "theme_dark", "theme_minimal", "theme_classic", "theme_void". |
Plot: quantile plot for visualizing data distribution.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(weight_sex) head(weight_sex) # 3. Default parameters quantile_plot(weight_sex) # 4. Set split_panel = "Split_Panel" quantile_plot(weight_sex, split_panel = "Split_Panel") # 5. Set sci_fill_color = "Sci_Futurama" quantile_plot(weight_sex, sci_fill_color = "Sci_Futurama") # 6. Set conf_int = FALSE quantile_plot(weight_sex, conf_int = FALSE)
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(weight_sex) head(weight_sex) # 3. Default parameters quantile_plot(weight_sex) # 4. Set split_panel = "Split_Panel" quantile_plot(weight_sex, split_panel = "Split_Panel") # 5. Set sci_fill_color = "Sci_Futurama" quantile_plot(weight_sex, sci_fill_color = "Sci_Futurama") # 6. Set conf_int = FALSE quantile_plot(weight_sex, conf_int = FALSE)
Samples and groups for gene expression.
data(samples_groups)
data(samples_groups)
Dataframe: Samples and groups for gene expression (1st-col: Samples, 2nd-col: Groups).
benben-miao
https://github.com/BioSciTools/BioSciToolsDatasets/tree/main/PCAplot/
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example dataset samples_groups data(samples_groups) # 3. View samples_groups samples_groups
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example dataset samples_groups data(samples_groups) # 3. View samples_groups samples_groups
Survival data as example data for survival_plot function.
data(survival_data)
data(survival_data)
Dataframe: survival record data (1st-col: Time, 2nd-col: Status, 3rd-col: Group).
benben-miao
https://github.com/BioSciTools/BioSciToolsDatasets/tree/main/SurvivalAnalysis/
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example data data(survival_data) # 3. View example data survival_data
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example data data(survival_data) # 3. View example data survival_data
Survival plot for analyzing and visualizing survival data.
survival_plot( data, curve_function = "pct", log_rank = "1", conf_inter = TRUE, interval_style = "ribbon", risk_table = TRUE, num_censor = TRUE, sci_palette = "aaas", ggTheme = "theme_light", x_start = 0, y_start = 0, y_end = 100, x_break = 10 )
survival_plot( data, curve_function = "pct", log_rank = "1", conf_inter = TRUE, interval_style = "ribbon", risk_table = TRUE, num_censor = TRUE, sci_palette = "aaas", ggTheme = "theme_light", x_start = 0, y_start = 0, y_end = 100, x_break = 10 )
data |
Dataframe: survival record data (1st-col: Time, 2nd-col: Status, 3rd-col: Group). |
curve_function |
Character: an arbitrary function defining a transformation of the survival curve. Often used transformations can be specified with a character argument: "event" plots cumulative events (f(y) = 1-y), "cumhaz" plots the cumulative hazard function (f(y) = -log(y)), and "pct" for survival probability in percentage. |
log_rank |
Character: the weights to be used in computing the p-value for log-rank test. Default: "1", options: "1", "n", "sqrtN", "S1", "S2", "FH". so that weight correspond to the test as : 1 - log-rank, n - Gehan-Breslow (generalized Wilcoxon), sqrtN - Tarone-Ware, S1 - Peto-Peto's modified survival estimate, S2 - modified Peto-Peto (by Andersen), FH - Fleming-Harrington(p=1, q=1). |
conf_inter |
Logical: confidence interval. Default: TRUE, options: TRUE, FALSE. |
interval_style |
Character: confidence interval style. Default: "ribbon", options: "ribbon", "step". |
risk_table |
Logical: show cumulative risk table. Default: TRUE, options: TRUE, FALSE. |
num_censor |
Logical: show cumulative number of censoring. Default: TRUE, options: TRUE, FALSE. |
sci_palette |
Character: ggsci color palette. Default: "aaas", options: "aaas", "npg", "lancet", "jco", "ucscgb", "uchicago", "simpsons", "rickandmorty". |
ggTheme |
Character: ggplot2 themes. Default: "theme_light", options: "theme_default", "theme_bw", "theme_gray", "theme_light", "theme_linedraw", "theme_dark", "theme_minimal", "theme_classic", "theme_void" |
x_start |
Numeric: x-axis start value. Default: 0, min: 0, max: null. |
y_start |
Numeric: y-axis start value. Default: 0, min: 0, max: 100. |
y_end |
Numeric: y-axis end value. Default: 100, min: 0, max: 100. |
x_break |
Numeric: x-axis break value. Default: 10, min: 0, max: null. |
Plot: survival plot for analyzing and visualizing survival data.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(survival_data) head(survival_data) # 3. Default parameters survival_plot(survival_data) # 4. Set conf_inter = FALSE survival_plot(survival_data, conf_inter = FALSE) # 5. Set sci_palette = "jco" survival_plot(survival_data, sci_palette = "jco")
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(survival_data) head(survival_data) # 3. Default parameters survival_plot(survival_data) # 4. Set conf_inter = FALSE survival_plot(survival_data, conf_inter = FALSE) # 5. Set sci_palette = "jco" survival_plot(survival_data, sci_palette = "jco")
Table cross used to cross search and merge results in two tables.
table_cross( data1, data2, inter_var = "Genes", left_index = TRUE, right_index = TRUE )
table_cross( data1, data2, inter_var = "Genes", left_index = TRUE, right_index = TRUE )
data1 |
Dataframe: Shared DEGs of all paired comparisons in all samples expression dataframe of RNA-Seq. (1st-col: Genes, 2nd-col~: Samples). |
data2 |
Dataframe: GO and KEGG annotation of background genes (1st-col: Genes, 2nd-col: biological_process, 3rd-col: cellular_component, 4th-col: molecular_function, 5th-col: kegg_pathway). |
inter_var |
Character: Intersecting variable (column name). Default: "geneID" in example data. |
left_index |
Logical: left table as index. Default: TRUE, options: TRUE, FALSE. |
right_index |
Logical: right table as index. Default: FALSE, options: TRUE, FALSE. |
Table: include multiple columns.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_expression2) head(gene_expression2) data(gene_go_kegg) head(gene_go_kegg) # 3. Default parameters res <- table_cross(gene_expression2, gene_go_kegg, inter_var = "Genes") head(res) # 4. Set left_index = TRUE, right_index = FALSE res <- table_cross(gene_expression2, gene_go_kegg, inter_var = "Genes", left_index = TRUE, right_index = FALSE) head(res) # 5. Set left_index = FALSE, right_index = TRUE res <- table_cross(gene_expression2, gene_go_kegg, inter_var = "Genes", left_index = FALSE, right_index = TRUE) head(res)
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_expression2) head(gene_expression2) data(gene_go_kegg) head(gene_go_kegg) # 3. Default parameters res <- table_cross(gene_expression2, gene_go_kegg, inter_var = "Genes") head(res) # 4. Set left_index = TRUE, right_index = FALSE res <- table_cross(gene_expression2, gene_go_kegg, inter_var = "Genes", left_index = TRUE, right_index = FALSE) head(res) # 5. Set left_index = FALSE, right_index = TRUE res <- table_cross(gene_expression2, gene_go_kegg, inter_var = "Genes", left_index = FALSE, right_index = TRUE) head(res)
Table filter used to filter row by column condition.
table_filter(data, ...)
table_filter(data, ...)
data |
Dataframe: Length, Width, Weight, and Sex traits dataframe (1st-col: Value, 2nd-col: Traits, 3rd-col: Sex). |
... |
Expression: multiple expressions. |
Table: table filter used to filter row by column condition.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(traits_sex) head(traits_sex) # 3. Set height > 100 & eye_color == "black" res <- table_filter(traits_sex, Sex == "Male" & Traits == "Weight" & Value > 40) head(res)
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(traits_sex) head(traits_sex) # 3. Set height > 100 & eye_color == "black" res <- table_filter(traits_sex, Sex == "Male" & Traits == "Weight" & Value > 40) head(res)
Table merge used to merge multiple variables to on variable.
table_merge( data, merge_vars = c("biological_process", "cellular_component", "molecular_function"), new_var = "go_category", new_value = "go_term", na_remove = FALSE )
table_merge( data, merge_vars = c("biological_process", "cellular_component", "molecular_function"), new_var = "go_category", new_value = "go_term", na_remove = FALSE )
data |
Dataframe: GO and KEGG annotation of background genes (1st-col: Genes, 2nd-col: biological_process, 3rd-col: cellular_component, 4th-col: molecular_function, 5th-col: kegg_pathway). |
merge_vars |
Vector: include merged variable (column) names. Default: c("Ozone", "Solar.R", "Wind", "Temp") in example data. |
new_var |
Character: new variable (column) name. Default: "Variable". |
new_value |
Character: new variable (column) value name. Default: "Value". |
na_remove |
Logical: remove NA value. Default: FALSE, options: TRUE, FALSE. |
Table: include multiple variables.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_go_kegg) head(gene_go_kegg) # 3. Default parameters res <- table_merge(gene_go_kegg) head(res) # 4. Set new_var = "GO", new_value = "Terms" res <- table_merge(gene_go_kegg, new_var = "GO", new_value = "Terms") head(res)
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_go_kegg) head(gene_go_kegg) # 3. Default parameters res <- table_merge(gene_go_kegg) head(res) # 4. Set new_var = "GO", new_value = "Terms" res <- table_merge(gene_go_kegg, new_var = "GO", new_value = "Terms") head(res)
Table split used for splitting a grouped column to multiple columns.
table_split( data, grouped_var = "go_category", value_var = "go_term", miss_drop = TRUE )
table_split( data, grouped_var = "go_category", value_var = "go_term", miss_drop = TRUE )
data |
Dataframe: GO and KEGG annotation of background genes (1st-col: Genes, 2nd-col: biological_process, 3rd-col: cellular_component, 4th-col: molecular_function, 5th-col: kegg_pathway). |
grouped_var |
Character: grouped column name. Default: "go_category". |
value_var |
Character: value column name. Default: "go_term". |
miss_drop |
Logical: drop missing values or NA values. Default: TRUE, options: TRUE, FALSE. |
Table: table split used for splitting a grouped column to multiple columns.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_go_kegg2) head(gene_go_kegg2) # 3. Default parameters res <- table_split(gene_go_kegg2) head(res)
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_go_kegg2) head(gene_go_kegg2) # 3. Default parameters res <- table_split(gene_go_kegg2) head(res)
TOmicsVis shiny app start function.
tomicsvis()
tomicsvis()
Shinyapp: TOmicsVis shiny app.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis)
# 1. Library TOmicsVis package library(TOmicsVis)
Length, Width, Weight, and Sex traits dataframe.
data(traits_sex)
data(traits_sex)
Dataframe: Length, Width, Weight, and Sex traits dataframe (1st-col: Value, 2nd-col: Traits, 3rd-col: Sex).
benben-miao
https://github.com/BioSciTools/BioSciToolsDatasets/tree/main/BoxStat/
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example data data(traits_sex) # 3. View example data traits_sex
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example data data(traits_sex) # 3. View example data traits_sex
Trend plot for visualizing gene expression trend profile in multiple traits.
trend_plot( data, scale_method = "centerObs", miss_value = "exclude", line_alpha = 0.5, show_points = TRUE, show_boxplot = TRUE, num_column = 1, xlab = "Traits", ylab = "Genes Expression", sci_fill_color = "Sci_AAAS", sci_fill_alpha = 0.8, sci_color_alpha = 0.8, legend_pos = "right", legend_dir = "vertical", ggTheme = "theme_light" )
trend_plot( data, scale_method = "centerObs", miss_value = "exclude", line_alpha = 0.5, show_points = TRUE, show_boxplot = TRUE, num_column = 1, xlab = "Traits", ylab = "Genes Expression", sci_fill_color = "Sci_AAAS", sci_fill_alpha = 0.8, sci_color_alpha = 0.8, legend_pos = "right", legend_dir = "vertical", ggTheme = "theme_light" )
data |
Dataframe: Shared degs of all paired comparisons in all groups expression dataframe of RNA-Seq. (1st-col: Genes, 2nd-col~n-1-col: Groups, n-col: Pathways). |
scale_method |
Character: data scale methods. Default: "globalminmax" (global min and max values), options: "std" (standard), "robust", "uniminmax" (unique min and max values), "globalminmax", "center", "centerObs" (center observes). |
miss_value |
Character: deal method for missing values. Default: "exclude", options: "exclude", "mean", "median", "min10", "random". |
line_alpha |
Numeric: lines color alpha. Default: 0.50, min: 0.00, max: 1.00. |
show_points |
Logical: show points at trait node. Default: TRUE, options: TRUE, FALSE. |
show_boxplot |
Logical: show boxplot at trait node. Default: TRUE, options: TRUE, FALSE. |
num_column |
Logical: column number. Default: 2, min: 1, max: null. |
xlab |
Character: x label. Default: "Traits". |
ylab |
Character: y label. Default: "Genes Expression". |
sci_fill_color |
Character: ggsci color pallet. Default: "Sci_AAAS", options: "Sci_AAAS", "Sci_NPG", "Sci_Simpsons", "Sci_JAMA", "Sci_GSEA", "Sci_Lancet", "Sci_Futurama", "Sci_JCO", "Sci_NEJM", "Sci_IGV", "Sci_UCSC", "Sci_D3", "Sci_Material". |
sci_fill_alpha |
Numeric: ggsci fill color alpha. Default: 0.50, min: 0.00, max: 1.00. |
sci_color_alpha |
Numeric: ggsci border color alpha. Default: 1.00, min: 0.00, max: 1.00. |
legend_pos |
Character: legend position. Default: "right", options: "none", "left", "right", "bottom", "top". |
legend_dir |
Character: legend direction. Default: "vertical", options: "horizontal", "vertical". |
ggTheme |
Character: ggplot2 themes. Default: "theme_light", options: "theme_default", "theme_bw", "theme_gray", "theme_light", "theme_linedraw", "theme_dark", "theme_minimal", "theme_classic", "theme_void" |
Plot: box plot support two levels and multiple groups with P value.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_expression3) head(gene_expression3) # 3. Default parameters trend_plot(gene_expression3[1:50,]) # 4. Set line_alpha = 0.30 trend_plot(gene_expression3[1:50,], line_alpha = 0.30) # 5. Set sci_fill_color = "Sci_NPG" trend_plot(gene_expression3[1:50,], sci_fill_color = "Sci_NPG")
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_expression3) head(gene_expression3) # 3. Default parameters trend_plot(gene_expression3[1:50,]) # 4. Set line_alpha = 0.30 trend_plot(gene_expression3[1:50,], line_alpha = 0.30) # 5. Set sci_fill_color = "Sci_NPG" trend_plot(gene_expression3[1:50,], sci_fill_color = "Sci_NPG")
TSNE analysis for analyzing and visualizing TSNE algorithm.
tsne_analysis(sample_gene, group_sample, seed = 1, tsne_dims = 2)
tsne_analysis(sample_gene, group_sample, seed = 1, tsne_dims = 2)
sample_gene |
Dataframe: All genes in all samples expression dataframe of RNA-Seq (1st-col: Genes, 2nd-col~: Samples). |
group_sample |
Dataframe: Samples and groups for gene expression (1st-col: Samples, 2nd-col: Groups). |
seed |
Numeric: set seed for robust result. Default: 1. |
tsne_dims |
Numeric: TSNE dimensionality number. Default: 2. |
Table: TSNE analysis for analyzing and visualizing TSNE algorithm.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_expression) head(gene_expression) data(samples_groups) head(samples_groups) # 3. Default parameters res <- tsne_analysis(gene_expression, samples_groups) head(res) # 4. Set tsne_dims = 3 res <- tsne_analysis(gene_expression, samples_groups, tsne_dims = 3) head(res)
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_expression) head(gene_expression) data(samples_groups) head(samples_groups) # 3. Default parameters res <- tsne_analysis(gene_expression, samples_groups) head(res) # 4. Set tsne_dims = 3 res <- tsne_analysis(gene_expression, samples_groups, tsne_dims = 3) head(res)
TSNE plot for analyzing and visualizing TSNE algorithm.
tsne_plot( sample_gene, group_sample, seed = 1, multi_shape = FALSE, point_size = 5, point_alpha = 0.8, text_size = 5, text_alpha = 0.8, fill_alpha = 0.1, border_alpha = 0, sci_fill_color = "Sci_AAAS", legend_pos = "right", legend_dir = "vertical", ggTheme = "theme_light" )
tsne_plot( sample_gene, group_sample, seed = 1, multi_shape = FALSE, point_size = 5, point_alpha = 0.8, text_size = 5, text_alpha = 0.8, fill_alpha = 0.1, border_alpha = 0, sci_fill_color = "Sci_AAAS", legend_pos = "right", legend_dir = "vertical", ggTheme = "theme_light" )
sample_gene |
Dataframe: All genes in all samples expression dataframe of RNA-Seq (1st-col: Genes, 2nd-col~: Samples). |
group_sample |
Dataframe: Samples and groups for gene expression (1st-col: Samples, 2nd-col: Groups). |
seed |
Numeric: set seed for robust result. Default: 1. |
multi_shape |
Logical: groups as shapes. Default: FALSE, options: TRUE, FALSE. |
point_size |
Numeric: point size. Default: 5, min: 0, max: null. |
point_alpha |
Numeric: point color alpha. Default: 0.80, min: 0.00, max: 1.00. |
text_size |
Numeric: text size. Default: 5, min: 0 (hind), max: null. |
text_alpha |
Numeric: text alpha. Default: 0.80, min: 0.00, max: 1.00. |
fill_alpha |
Numeric: ellipse alpha. Default: 0.30, min: 0.00, max: 1.00. |
border_alpha |
Numeric: ellipse border color alpha. Default: 0.10, min: 0.00, max: 1.00. |
sci_fill_color |
Character: ggsci color pallet. Default: "Sci_AAAS", options: "Sci_AAAS", "Sci_NPG", "Sci_Simpsons", "Sci_JAMA", "Sci_GSEA", "Sci_Lancet", "Sci_Futurama", "Sci_JCO", "Sci_NEJM", "Sci_IGV", "Sci_UCSC", "Sci_D3", "Sci_Material". |
legend_pos |
Character: legend position. Default: "right", options: "none", "left", "right", "bottom", "top". |
legend_dir |
Character: legend direction. Default: "vertical", options: "horizontal", "vertical". |
ggTheme |
Character: ggplot2 themes. Default: "theme_light", options: "theme_default", "theme_bw", "theme_gray", "theme_light", "theme_linedraw", "theme_dark", "theme_minimal", "theme_classic", "theme_void" |
Plot: TSNE plot for analyzing and visualizing TSNE algorithm.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_expression) head(gene_expression) data(samples_groups) head(samples_groups) # 3. Default parameters tsne_plot(gene_expression, samples_groups) # 4. Set sci_fill_color = "Sci_NPG", seed = 6 tsne_plot(gene_expression, samples_groups, sci_fill_color = "Sci_NPG", seed = 6) # 5. Set multi_shape = TRUE, fill_alpha = 0.00 tsne_plot(gene_expression, samples_groups, multi_shape = TRUE, fill_alpha = 0.00)
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_expression) head(gene_expression) data(samples_groups) head(samples_groups) # 3. Default parameters tsne_plot(gene_expression, samples_groups) # 4. Set sci_fill_color = "Sci_NPG", seed = 6 tsne_plot(gene_expression, samples_groups, sci_fill_color = "Sci_NPG", seed = 6) # 5. Set multi_shape = TRUE, fill_alpha = 0.00 tsne_plot(gene_expression, samples_groups, multi_shape = TRUE, fill_alpha = 0.00)
UMAP analysis for analyzing RNA-Seq data.
umap_analysis(sample_gene, group_sample, seed = 1, method = "naive")
umap_analysis(sample_gene, group_sample, seed = 1, method = "naive")
sample_gene |
Dataframe: gene expression dataframe (1st-col: Transcripts or Genes, 2nd-col~: Samples). |
group_sample |
Dataframe: Samples and groups for gene expression (1st-col: Samples, 2nd-col: Groups). |
seed |
Numeric: set seed for robust result. Default: 1. |
method |
Character: 'naive' (an implementation written in pure R) and 'umap-learn' (requires python package 'umap-learn'). |
Table: UMAP analysis for analyzing RNA-Seq data.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_expression) head(gene_expression) data(samples_groups) head(samples_groups) # 3. Default parameters res <- umap_analysis(gene_expression, samples_groups) head(res)
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_expression) head(gene_expression) data(samples_groups) head(samples_groups) # 3. Default parameters res <- umap_analysis(gene_expression, samples_groups) head(res)
UMAP plot for analyzing and visualizing UMAP algorithm.
umap_plot( sample_gene, group_sample, seed = 1, multi_shape = TRUE, point_size = 5, point_alpha = 1, text_size = 5, text_alpha = 0.8, fill_alpha = 0, border_alpha = 0, sci_fill_color = "Sci_AAAS", legend_pos = "right", legend_dir = "vertical", ggTheme = "theme_light" )
umap_plot( sample_gene, group_sample, seed = 1, multi_shape = TRUE, point_size = 5, point_alpha = 1, text_size = 5, text_alpha = 0.8, fill_alpha = 0, border_alpha = 0, sci_fill_color = "Sci_AAAS", legend_pos = "right", legend_dir = "vertical", ggTheme = "theme_light" )
sample_gene |
Dataframe: gene expression dataframe (1st-col: Transcripts or Genes, 2nd-col~: Samples). |
group_sample |
Dataframe: Samples and groups for gene expression (1st-col: Samples, 2nd-col: Groups). |
seed |
Numeric: set seed for robust result. Default: 1. |
multi_shape |
Logical: groups as shapes. Default: FALSE, options: TRUE, FALSE. |
point_size |
Numeric: point size. Default: 5, min: 0, max: null. |
point_alpha |
Numeric: point color alpha. Default: 0.80, min: 0.00, max: 1.00. |
text_size |
Numeric: text size. Default: 5, min: 0 (hind), max: null. |
text_alpha |
Numeric: text alpha. Default: 0.80, min: 0.00, max: 1.00. |
fill_alpha |
Numeric: ellipse alpha. Default: 0.30, min: 0.00, max: 1.00. |
border_alpha |
Numeric: ellipse border color alpha. Default: 0.10, min: 0.00, max: 1.00. |
sci_fill_color |
Character: ggsci color pallet. Default: "Sci_AAAS", options: "Sci_AAAS", "Sci_NPG", "Sci_Simpsons", "Sci_JAMA", "Sci_GSEA", "Sci_Lancet", "Sci_Futurama", "Sci_JCO", "Sci_NEJM", "Sci_IGV", "Sci_UCSC", "Sci_D3", "Sci_Material". |
legend_pos |
Character: legend position. Default: "right", options: "none", "left", "right", "bottom", "top". |
legend_dir |
Character: legend direction. Default: "vertical", options: "horizontal", "vertical". |
ggTheme |
Character: ggplot2 themes. Default: "theme_light", options: "theme_default", "theme_bw", "theme_gray", "theme_light", "theme_linedraw", "theme_dark", "theme_minimal", "theme_classic", "theme_void" |
Plot: UMAP plot for analyzing and visualizing UMAP algorithm.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_expression) head(gene_expression) data(samples_groups) head(samples_groups) # 3. Default parameters umap_plot(gene_expression, samples_groups) # 4. Set sci_fill_color = "Sci_Simpsons", seed = 6 umap_plot(gene_expression, samples_groups, sci_fill_color = "Sci_Simpsons", seed = 6) # 5. Set fill_alpha = 0.10 umap_plot(gene_expression, samples_groups, fill_alpha = 0.10)
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_expression) head(gene_expression) data(samples_groups) head(samples_groups) # 3. Default parameters umap_plot(gene_expression, samples_groups) # 4. Set sci_fill_color = "Sci_Simpsons", seed = 6 umap_plot(gene_expression, samples_groups, sci_fill_color = "Sci_Simpsons", seed = 6) # 5. Set fill_alpha = 0.10 umap_plot(gene_expression, samples_groups, fill_alpha = 0.10)
UpSet plot for stat common and unique gene among multiple sets.
upsetr_plot( data, sets_num = 4, keep_order = FALSE, order_by = "freq", decrease = TRUE, mainbar_color = "#006600", number_angle = 45, matrix_color = "#cc0000", point_size = 4.5, point_alpha = 0.5, line_size = 0.8, shade_color = "#cdcdcd", shade_alpha = 0.5, setsbar_color = "#000066", setsnum_size = 6, text_scale = 1.2 )
upsetr_plot( data, sets_num = 4, keep_order = FALSE, order_by = "freq", decrease = TRUE, mainbar_color = "#006600", number_angle = 45, matrix_color = "#cc0000", point_size = 4.5, point_alpha = 0.5, line_size = 0.8, shade_color = "#cdcdcd", shade_alpha = 0.5, setsbar_color = "#000066", setsnum_size = 6, text_scale = 1.2 )
data |
Dataframe: Paired comparisons differentially expressed genes (degs) among groups (1st-col~: degs of paired comparisons). |
sets_num |
Numeric: sets number. Default: 4, min: 2, max: NULL. |
keep_order |
Logical: keep sets in the order entered using the sets parameter. Default: FALSE, options: TRUE, FALSE. |
order_by |
Character: intersections in the matrix should be ordered by. Default: "freq" (frequency), options: "freq", "degree", "both". |
decrease |
Logical: order by decrease. Default: TRUE, options: TRUE, FALSE. |
mainbar_color |
Charactor: mainbar color (color name or hex value). Default: "#006600". |
number_angle |
Numeric: number display angle. Default: 45, min: 0, max: 360. |
matrix_color |
Charactor: matrix point color (color name or hex value). Default: "#cc0000". |
point_size |
Numeric: point size. Default: 4.5, min: 0.0, max: NULL. |
point_alpha |
Numeric: point color alpha. Default: 0.50, min: 0.00, max: 1.00. |
line_size |
Numeric: connection line size. Default: 0.8, min: 0.00, max: NULL. |
shade_color |
Character: matrix shade color. Default: "#cdcdcd". |
shade_alpha |
Numeric: shade color alpha. Default: 0.50, min: 0.00, max: 1.00. |
setsbar_color |
Character: sets bar color. Default: "#000066". |
setsnum_size |
Numeric: sets bar number size. Default: 6. |
text_scale |
Numeric: all text scale. Default: 1.2, min: 0.01, max: NULL. |
Plot: UpSet plot for stat common and unique gene among multiple sets.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(degs_lists) head(degs_lists) # 3. Default parameters upsetr_plot(degs_lists) # 4. Set keep_order = TRUE, order_by = "degree" upsetr_plot(degs_lists, keep_order = TRUE, order_by = "degree") # 5. Set mainbar_color = "#333333", number_angle = 0 upsetr_plot(degs_lists, mainbar_color = "#333333", number_angle = 0) # 6. Set shade_color = "#ffcc00", setsbar_color = "#0000cc" upsetr_plot(degs_lists, shade_color = "#ffcc00", setsbar_color = "#0000cc")
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(degs_lists) head(degs_lists) # 3. Default parameters upsetr_plot(degs_lists) # 4. Set keep_order = TRUE, order_by = "degree" upsetr_plot(degs_lists, keep_order = TRUE, order_by = "degree") # 5. Set mainbar_color = "#333333", number_angle = 0 upsetr_plot(degs_lists, mainbar_color = "#333333", number_angle = 0) # 6. Set shade_color = "#ffcc00", setsbar_color = "#0000cc" upsetr_plot(degs_lists, shade_color = "#ffcc00", setsbar_color = "#0000cc")
Venn plot for stat common and unique gene among multiple sets.
venn_plot( data, title_size = 1, label_show = TRUE, label_size = 0.8, border_show = TRUE, line_type = "longdash", ellipse_shape = "circle", sci_fill_color = "Sci_AAAS", sci_fill_alpha = 0.65 )
venn_plot( data, title_size = 1, label_show = TRUE, label_size = 0.8, border_show = TRUE, line_type = "longdash", ellipse_shape = "circle", sci_fill_color = "Sci_AAAS", sci_fill_alpha = 0.65 )
data |
Dataframe: Paired comparisons differentially expressed genes (degs) among groups (1st-col~: degs of paired comparisons). |
title_size |
Numeric: sets title size. Default: 1, min: 0, max: NULL. |
label_show |
Logical: show intersection labels. Default: TRUE, options: TRUE, FALSE. |
label_size |
Numeric: intersection labels size. Default: 0.8, min: 0, max: NULL. |
border_show |
Logical: show border line. Default: TRUE, options: TRUE, FALSE. |
line_type |
Character: ellipse border line type. Default: "blank", options: "blank", "solid", "dashed", "dotted", "dotdash", "longdash", "twodash". |
ellipse_shape |
Character: ellipse shape. Default: "circle", options: "circle", "ellipse". |
sci_fill_color |
Character: ggsci color palette. Default: "Sci_AAAS", options: "Sci_AAAS", "Sci_NPG", "Sci_Simpsons", "Sci_JAMA", "Sci_GSEA", "Sci_Lancet", "Sci_Futurama", "Sci_JCO", "Sci_NEJM", "Sci_IGV", "Sci_UCSC", "Sci_D3", "Sci_Material". |
sci_fill_alpha |
Numeric: ggsci fill color alpha. Default: 0.65, min: 0.00, max: 1.00. |
Plot: venn plot for stat common and unique gene among multiple sets.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(degs_lists) head(degs_lists) # 3. Default parameters venn_plot(degs_lists) # 4. Set line_type = "blank" venn_plot(degs_lists, line_type = "blank") # 5. Set ellipse_shape = "ellipse" venn_plot(degs_lists, ellipse_shape = "ellipse") # 6. Set sci_fill_color = "Sci_IGV" venn_plot(degs_lists, sci_fill_color = "Sci_IGV")
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(degs_lists) head(degs_lists) # 3. Default parameters venn_plot(degs_lists) # 4. Set line_type = "blank" venn_plot(degs_lists, line_type = "blank") # 5. Set ellipse_shape = "ellipse" venn_plot(degs_lists, ellipse_shape = "ellipse") # 6. Set sci_fill_color = "Sci_IGV" venn_plot(degs_lists, sci_fill_color = "Sci_IGV")
Violin plot support two levels and multiple groups with P value.
violin_plot( data, test_method = "t.test", test_label = "p.format", group_level = "Three_Column", violin_orientation = "vertical", add_element = "boxplot", element_alpha = 0.5, my_shape = "plus_times", sci_fill_color = "Sci_AAAS", sci_fill_alpha = 0.5, sci_color_alpha = 1, legend_pos = "right", legend_dir = "vertical", ggTheme = "theme_light" )
violin_plot( data, test_method = "t.test", test_label = "p.format", group_level = "Three_Column", violin_orientation = "vertical", add_element = "boxplot", element_alpha = 0.5, my_shape = "plus_times", sci_fill_color = "Sci_AAAS", sci_fill_alpha = 0.5, sci_color_alpha = 1, legend_pos = "right", legend_dir = "vertical", ggTheme = "theme_light" )
data |
Dataframe: Length, Width, Weight, and Sex traits dataframe (1st-col: Value, 2nd-col: Traits, 3rd-col: Sex). |
test_method |
Character: test methods of P value. Default: "t.test", options: "wilcox.test", "t.test", "anova", "kruskal.test". |
test_label |
Character: test label of P value. Default: "p.format", options: "p.signif", "p.format". c(0, 0.0001, 0.001, 0.01, 0.05, 1). |
group_level |
Character: group levels. Default: "Three_Column", options: "Two_Column", "Three_Column". |
violin_orientation |
Character: violin orientation. Default: "vertical", options: "vertical", "horizontal", "reverse". |
add_element |
Character: add new plot. Default: "boxplot", options: "none", "dotplot", "jitter", "boxplot", "point", "mean", "mean_se", "mean_sd", "mean_ci", "mean_range", "median", "median_iqr", "median_hilow", "median_q1q3", "median_mad", "median_range". |
element_alpha |
Numeric: element color alpha. Default: 0.50, min: 0.00, max: 1.00. |
my_shape |
Character: box scatter shape. Default: "plus_times", options: "border_square", "border_circle", "border_triangle", "plus", "times", "border_diamond", "border_triangle_down", "square_times", "plus_times", "diamond_plus", "circle_plus", "di_triangle", "square_plus", "circle_times","square_triangle", "fill_square", "fill_circle", "fill_triangle", "fill_diamond", "large_circle", "small_circle", "fill_border_circle", "fill_border_square", "fill_border_diamond", "fill_border_triangle". |
sci_fill_color |
Character: ggsci color pallet. Default: "Sci_AAAS", options: "Sci_AAAS", "Sci_NPG", "Sci_Simpsons", "Sci_JAMA", "Sci_GSEA", "Sci_Lancet", "Sci_Futurama", "Sci_JCO", "Sci_NEJM", "Sci_IGV", "Sci_UCSC", "Sci_D3", "Sci_Material". |
sci_fill_alpha |
Numeric: ggsci fill color alpha. Default: 0.50, min: 0.00, max: 1.00. |
sci_color_alpha |
Numeric: ggsci border color alpha. Default: 1.00, min: 0.00, max: 1.00. |
legend_pos |
Character: legend position. Default: "right", options: "none", "left", "right", "bottom", "top". |
legend_dir |
Character: legend direction. Default: "vertical", options: "horizontal", "vertical". |
ggTheme |
Character: ggplot2 themes. Default: "theme_light", options: "theme_default", "theme_bw", "theme_gray", "theme_light", "theme_linedraw", "theme_dark", "theme_minimal", "theme_classic", "theme_void" |
Plot: violin plot support two levels and multiple groups with P value.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(traits_sex) head(traits_sex) # 3. Default parameters violin_plot(traits_sex) # 4. Set test_label = "p.signif", violin_plot(traits_sex, test_label = "p.signif") # 5. Set violin_orientation = "horizontal" violin_plot(traits_sex, violin_orientation = "horizontal") # 6. Set group_level = "Two_Column" violin_plot(traits_sex, group_level = "Two_Column") # 7. Set add_element = "jitter" violin_plot(traits_sex, add_element = "jitter")
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(traits_sex) head(traits_sex) # 3. Default parameters violin_plot(traits_sex) # 4. Set test_label = "p.signif", violin_plot(traits_sex, test_label = "p.signif") # 5. Set violin_orientation = "horizontal" violin_plot(traits_sex, violin_orientation = "horizontal") # 6. Set group_level = "Two_Column" violin_plot(traits_sex, group_level = "Two_Column") # 7. Set add_element = "jitter" violin_plot(traits_sex, add_element = "jitter")
Volcano plot for visualizing differentailly expressed genes.
volcano_plot( data, title = "CT-vs-LT12", log2fc_cutoff = 1, pq_value = "pvalue", pq_cutoff = 0.05, cutoff_line = "longdash", point_shape = "large_circle", point_size = 2, point_alpha = 0.5, color_normal = "#888888", color_log2fc = "#008000", color_pvalue = "#0088ee", color_Log2fc_p = "#ff0000", label_size = 3, boxed_labels = FALSE, draw_connectors = FALSE, legend_pos = "right" )
volcano_plot( data, title = "CT-vs-LT12", log2fc_cutoff = 1, pq_value = "pvalue", pq_cutoff = 0.05, cutoff_line = "longdash", point_shape = "large_circle", point_size = 2, point_alpha = 0.5, color_normal = "#888888", color_log2fc = "#008000", color_pvalue = "#0088ee", color_Log2fc_p = "#ff0000", label_size = 3, boxed_labels = FALSE, draw_connectors = FALSE, legend_pos = "right" )
data |
Dataframe: differentially expressed genes (DEGs) stats (1st-col: Genes, 2nd-col: log2FoldChange, 3rd-col: Pvalue, 4th-col: FDR). |
title |
Character: title of plot. Default: CT-vs-LT12. |
log2fc_cutoff |
Numeric: log2(FoldChange) cutoff log2(2) = 1. Default: 1.0, min: 0.0, max: null. |
pq_value |
Character: select pvalue or qvalue. Default: "pvalue", options: "pvalue", "padj". |
pq_cutoff |
Numeric: pvalue or qvalue cutoff. Default: 0.005, min: 0.000, max: 1.000. |
cutoff_line |
Character: cutoff line type. Default: "longdash", options: "blank", "solid", "dashed", "dotted", "dotdash", "longdash", "twodash". |
point_shape |
Character: point shape. Default: "large_circle", options: "border_square", "border_circle", "border_triangle", "plus", "times", "border_diamond", "border_triangle_down", "square_times", "plus_times", "diamond_plus", "circle_plus", "di_triangle", "square_plus", "circle_times","square_triangle", "fill_square", "fill_circle", "fill_triangle", "fill_diamond", "large_circle", "small_circle", "fill_border_circle", "fill_border_square", "fill_border_diamond", "fill_border_triangle". |
point_size |
Numeric: point size. Default: 1.0, min: 0.0, max: null. |
point_alpha |
Numeric: point color alpha. Default: 0.50, min: 0.00, max: 1.00. |
color_normal |
Character: normal genes color (color name or hex value). Default: "#888888". |
color_log2fc |
Character: genes color that log2fc >= log2fc_cutoff. Default: "#008000". |
color_pvalue |
Character: genes color that pvalue > pq_cutoff. Default: "#0088ee". |
color_Log2fc_p |
Character: genes color that log2fc >= log2fc_cutoff and pvalue > pq_cutoff. Default: "#ff0000". |
label_size |
Numeric: DEG labels size. Default: 3.0, min: 0.0, max: null. |
boxed_labels |
Logical: add box to every DEG label. Default: FALSE. |
draw_connectors |
Logical: add connector between DEGs and labels. Default: FALSE. |
legend_pos |
Character: legend position. Default: "right", options: "right", "left", "top", "bottom". |
Plot: volcano plot for visualizing differentailly expressed genes.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(degs_stats) head(degs_stats) # 3. Default parameters volcano_plot(degs_stats) # 4. Set color_Log2fc_p = "#ff8800" volcano_plot(degs_stats, color_Log2fc_p = "#ff8800") # 5. Set boxed_labels = TRUE volcano_plot(degs_stats, boxed_labels = TRUE)
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(degs_stats) head(degs_stats) # 3. Default parameters volcano_plot(degs_stats) # 4. Set color_Log2fc_p = "#ff8800" volcano_plot(degs_stats, color_Log2fc_p = "#ff8800") # 5. Set boxed_labels = TRUE volcano_plot(degs_stats, boxed_labels = TRUE)
Weight and Sex traits dataframe.
data(weight_sex)
data(weight_sex)
Dataframe: Weight and Sex traits dataframe (1st-col: Weight, 2nd-col: Sex).
benben-miao
https://github.com/BioSciTools/BioSciToolsDatasets/tree/main/QuantileQuantile/
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example data data(weight_sex) # 3. View example data weight_sex
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Load example data data(weight_sex) # 3. View example data weight_sex
WGCNA analysis pipeline for RNA-Seq.
wgcna_pipeline( sample_gene, group_sample, R_cutofff = 0.85, max_block = 5000, min_module = 20, network_type = "unsigned", merge_cutoff = 0.15, cor_type = "pearson", na_color = "#cdcdcd", xlab_angle = 45, text_size = 0.7 )
wgcna_pipeline( sample_gene, group_sample, R_cutofff = 0.85, max_block = 5000, min_module = 20, network_type = "unsigned", merge_cutoff = 0.15, cor_type = "pearson", na_color = "#cdcdcd", xlab_angle = 45, text_size = 0.7 )
sample_gene |
Dataframe: All genes in all samples expression dataframe of RNA-Seq (1st-col: Genes, 2nd-col~: Samples). |
group_sample |
Dataframe: Samples and groups for gene expression (1st-col: Samples, 2nd-col: Groups). |
R_cutofff |
Numeric: Rsquare cutoff. Default: 0.85, min: 0.00, max: 1.00. |
max_block |
Numeric: max block size. Default: 5000. |
min_module |
Numeric: min module gene number. Default: 20. |
network_type |
Character: network type. Default: "unsigned", options: "unsigned", "signed", "signed hybrid". |
merge_cutoff |
Numeric: merge modules cutoff. Default: 0.15. |
cor_type |
Character: correlation type. Default: "pearson", options: "pearson", "bicor". |
na_color |
Character: NA value color (color name or hex value). Default: "#cdcdcd". |
xlab_angle |
Numeric: X axis lable angle. Default: 45, min: 0, max: 360. |
text_size |
Numeric: cell text size. Default: 0.7, min: 0, max: NULL. |
WGCNA results in tempdir() directory of current session.
benben-miao
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_expression) head(gene_expression) data(samples_groups) head(samples_groups)
# 1. Library TOmicsVis package library(TOmicsVis) # 2. Use example dataset data(gene_expression) head(gene_expression) data(samples_groups) head(samples_groups)